Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"`if, y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`
उत्तर
y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`
Differentiating both sides w.r.t.x, we get
`"dy"/"dx" = "d"/"dx" (10^("x"^"x") + 10^("x"^10) + 10^(10^"x"))`
`= "d"/"dx" (10^("x"^"x")) + "d"/"dx" (10^("x"^10)) + "d"/"dx" (10^(10^"x"))`
∴ `"dy"/"dx" = 10^("x"^"x") * log 10 * "d"/"dx" ("x"^"x") + 10^("x"^10) * log 10 * "d"/"dx" ("x"^10) + 10^(10^"x") * log 10 * "d"/"dx" (10^"x")`
`= 10^("x"^"x") * log 10 * "x"^"x"(1 + log "x") + 10^("x"^10) * log 10 * 10 "x"^9 + 10^(10^"x") * log 10 * 10^"x" log 10`
∴ `"dy"/"dx" = 10^("x"^"x") * "x"^"x" * log 10(1 + log "x") + 10^("x"^10) * 10 "x"^9 * log 10 + 10^(10^"x") * 10^"x" (log 10)^2`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = (2x + 5)x
If y = log `("e"^"x"/"x"^2)`, then `"dy"/"dx" = ?`
Fill in the Blank
If 0 = log(xy) + a, then `"dy"/"dx" = (-"y")/square`
Fill in the blank.
If y = y = [log (x)]2 then `("d"^2"y")/"dx"^2 =` _____.
Fill in the blank.
If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____
The derivative of ax is ax log a.
Solve the following:
If y = [log(log(logx))]2, find `"dy"/"dx"`
Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`
If u = 5x and v = log x, then `("du")/("dv")` is ______
If u = ex and v = loge x, then `("du")/("dv")` is ______
Find `("d"y)/("d"x)`, if y = [log(log(logx))]2
Find `("d"y)/("d"x)`, if x = `sqrt(1 + "u"^2)`, y = log(1 +u2)
Solve the following differential equations:
x2ydx – (x3 – y3)dy = 0
If y = (log x)2 the `dy/dx` = ______.
Find `dy/dx "if", y = x^(e^x)`
Find `dy/dx,"if" y=x^x+(logx)^x`
Find `dy/(dx)` if, `y = x^(e^x)`
Find `dy/(dx)` if, `x = e^(3t), y = e^sqrtt`.