Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx" if, sqrt"x" + sqrt"y" = sqrt"a"`
उत्तर
`sqrt"x" + sqrt"y" = sqrt"a"`
Differentiating both sides w.r.t. x, we get
`1/(2 sqrt"x") + 1/(2sqrt"y") * "dy"/"dx" = 0`
∴ `1/(2sqrt"y") * "dy"/"dx" = (-1)/(2sqrt"x")`
∴ `"dy"/"dx" = - sqrt("y"/"x")`
APPEARS IN
संबंधित प्रश्न
Find `dy/dx` in the following:
ax + by2 = cos y
Find `dy/dx` in the following.
x3 + x2y + xy2 + y3 = 81
if `x^y + y^x = a^b`then Find `dy/dx`
if `(x^2 + y^2)^2 = xy` find `(dy)/(dx)`
Let \[f\left( x \right)\begin{cases}a x^2 + 1, & x > 1 \\ x + 1/2, & x \leq 1\end{cases}\] . Then, f (x) is derivable at x = 1, if
Find `dy/dx if x^3 + y^2 + xy = 7`
Find `"dy"/"dx"` ; if y = cos-1 `("2x" sqrt (1 - "x"^2))`
Discuss extreme values of the function f(x) = x.logx
If y = `sqrt(cosx + sqrt(cosx + sqrt(cosx + ... ∞)`, then show that `"dy"/"dx" = sinx/(1 - 2y)`.
Find `"dy"/"dx"`, if : x = sinθ, y = tanθ
DIfferentiate x sin x w.r.t. tan x.
Differentiate `sin^-1((2x)/(1 + x^2))w.r.t. cos^-1((1 - x^2)/(1 + x^2))`
Differentiate `tan^-1((x)/(sqrt(1 - x^2))) w.r.t. sec^-1((1)/(2x^2 - 1))`.
Find the nth derivative of the following : (ax + b)m
Find the nth derivative of the following : cos x
Choose the correct option from the given alternatives :
Let `f(1) = 3, f'(1) = -(1)/(3), g(1) = -4 and g'(1) =-(8)/(3).` The derivative of `sqrt([f(x)]^2 + [g(x)]^2` w.r.t. x at x = 1 is
Choose the correct option from the given alternatives :
If y = `tan^-1(x/(1 + sqrt(1 - x^2))) + sin[2tan^-1(sqrt((1 - x)/(1 + x)))] "then" "dy"/"dx"` = ...........
Choose the correct option from the given alternatives :
If `xsqrt(y + 1) + ysqrt(x + 1) = 0 and x ≠ y, "then" "dy"/"dx"` = ........
Differentiate the following w.r.t. x : `sin^2[cot^-1(sqrt((1 + x)/(1 - x)))]`
Find `"dy"/"dx"` if, x3 + x2y + xy2 + y3 = 81
Choose the correct alternative.
If y = 5x . x5, then `"dy"/"dx" = ?`
Choose the correct alternative.
If x = `("e"^"t" + "e"^-"t")/2, "y" = ("e"^"t" - "e"^-"t")/2` then `"dy"/"dx"` = ?
State whether the following is True or False:
The derivative of `"x"^"m"*"y"^"n" = ("x + y")^("m + n")` is `"x"/"y"`
If x2 + y2 = t + `1/"t"` and x4 + y4 = t2 + `1/"t"^2` then `("d"y)/("d"x)` = ______
`(dy)/(dx)` of `xy + y^2 = tan x + y` is
Differentiate w.r.t x (over no. 24 and 25) `e^x/sin x`
If y = `e^(m tan^-1x)` then show that `(1 + x^2) (d^2y)/(dx^2) + (2x - m) (dy)/(dx)` = 0
Let y = y(x) be a function of x satisfying `ysqrt(1 - x^2) = k - xsqrt(1 - y^2)` where k is a constant and `y(1/2) = -1/4`. Then `(dy)/(dx)` at x = `1/2`, is equal to ______.
If y = `sqrt(tan x + sqrt(tanx + sqrt(tanx + .... + ∞)`, then show that `dy/dx = (sec^2x)/(2y - 1)`.
Find `dy/dx` at x = 0.
If log(x+y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Find `dy/dx if , x = e^(3t) , y = e^sqrtt`
Find `dy / dx` if, x = `e^(3t), y = e^sqrt t`
Find `dy/dx` if, x = e3t, y = `e^sqrtt`
Find `dy/dx"if", x= e^(3t), y=e^sqrtt`