Advertisements
Advertisements
प्रश्न
Find `dy/dx` in the following.
x3 + x2y + xy2 + y3 = 81
उत्तर
Since, x3 + x2y + xy2 + y3 = 81
Differentiating both sides with respect to x,
`d/dx (x^3) + {x^2 dy/dx + y d/dx (x^2)} + {x dy/dx (y^2) + y^2 d/dx (x)} d/dx (y^3) = d/dx (81)`
`=> 3 x^2 + x^2 dy/dx + y xx 2x + x. 2y dy/dx + y^2 xx 1 + 3y^2 dy/d" = 0`
`=> x^2 dy/dx + x. 2y dy/dx + 3y^2 dy/dx = -(3 x^2 + 2xy + y^2)`
`dy/dx = (- (3 x^2 + 2xy + y^2))/( x^2 + 2xy + 3y^2)`
APPEARS IN
संबंधित प्रश्न
Find `dy/dx` in the following:
2x + 3y = sin y
Find `dy/dx` in the following:
ax + by2 = cos y
if `x^y + y^x = a^b`then Find `dy/dx`
Show that the derivative of the function f given by
Write the derivative of f (x) = |x|3 at x = 0.
If y = `sqrt(cosx + sqrt(cosx + sqrt(cosx + ... ∞)`, then show that `"dy"/"dx" = sinx/(1 - 2y)`.
Find `"dy"/"dx"` if x = a cot θ, y = b cosec θ
Find `"dy"/"dx"` if : x = t2 + t + 1, y = `sin((pit)/2) + cos((pit)/2) "at" t = 1`
Find `(d^2y)/(dx^2)` of the following : x = a cos θ, y = b sin θ at θ = `π/4`.
If x = cos t, y = emt, show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" - m^2y` = 0.
If `sec^-1((7x^3 - 5y^3)/(7^3 + 5y^3)) = "m", "show" (d^2y)/(dx^2)` = 0.
If x2 + 6xy + y2 = 10, show that `(d^2y)/(dx^2) = (80)/(3x + y)^3`.
Find the nth derivative of the following:
`(1)/x`
Find the nth derivative of the following : sin (ax + b)
Find the nth derivative of the following : `(1)/(3x - 5)`
Differentiate the following w.r.t. x : `sin[2tan^-1(sqrt((1 - x)/(1 + x)))]`
Differentiate the following w.r.t. x : `tan^-1((sqrt(x)(3 - x))/(1 - 3x))`
Differentiate `tan^-1((sqrt(1 + x^2) - 1)/x)` w.r.t. `cos^-1(sqrt((1 + sqrt(1 + x^2))/(2sqrt(1 + x^2))))`
If log y = log (sin x) – x2, show that `(d^2y)/(dx^2) + 4x "dy"/"dx" + (4x^2 + 3)y` = 0.
Find `"dy"/"dx" if, sqrt"x" + sqrt"y" = sqrt"a"`
State whether the following is True or False:
The derivative of `"x"^"m"*"y"^"n" = ("x + y")^("m + n")` is `"x"/"y"`
Find `"dy"/"dx"` if x = `"e"^"3t", "y" = "e"^(sqrt"t")`.
If x2 + y2 = 1, then `(d^2x)/(dy^2)` = ______.
If x = a t4 y = 2a t2 then `("d"y)/("d"x)` = ______
If y = `sqrt(tansqrt(x)`, find `("d"y)/("d"x)`.
If x = sin θ, y = tan θ, then find `("d"y)/("d"x)`.
Find `(dy)/(dx)`, if `y = sin^-1 ((2x)/(1 + x^2))`
y = `e^(x3)`
Find `(dy)/(dx)` if x + sin(x + y) = y – cos(x – y)
Find `(d^2y)/(dy^2)`, if y = e4x
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Find `dy/dx` if, x = `e^(3t)`, y = `e^sqrtt`
If log (x + y) = log (xy) + a then show that, `dy/dx = (−y^2)/x^ 2`
Find `dy/dx if , x = e^(3t) , y = e^sqrtt`
Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`
If log(x + y) = log(xy) + a then show that, `dy/dx = (−y^2)/x^2`
If log(x + y) = log(xy) + a then show that, `dy/dx=(-y^2)/x^2`