Advertisements
Advertisements
प्रश्न
Find `dy/dx` in the following.
x3 + x2y + xy2 + y3 = 81
उत्तर
Since, x3 + x2y + xy2 + y3 = 81
Differentiating both sides with respect to x,
`d/dx (x^3) + {x^2 dy/dx + y d/dx (x^2)} + {x dy/dx (y^2) + y^2 d/dx (x)} d/dx (y^3) = d/dx (81)`
`=> 3 x^2 + x^2 dy/dx + y xx 2x + x. 2y dy/dx + y^2 xx 1 + 3y^2 dy/d" = 0`
`=> x^2 dy/dx + x. 2y dy/dx + 3y^2 dy/dx = -(3 x^2 + 2xy + y^2)`
`dy/dx = (- (3 x^2 + 2xy + y^2))/( x^2 + 2xy + 3y^2)`
APPEARS IN
संबंधित प्रश्न
If \[\lim_{x \to c} \frac{f\left( x \right) - f\left( c \right)}{x - c}\] exists finitely, write the value of \[\lim_{x \to c} f\left( x \right)\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
Let \[f\left( x \right)\begin{cases}a x^2 + 1, & x > 1 \\ x + 1/2, & x \leq 1\end{cases}\] . Then, f (x) is derivable at x = 1, if
Differentiate e4x + 5 w.r..t.e3x
Differentiate tan-1 (cot 2x) w.r.t.x.
If x = tan-1t and y = t3 , find `(dy)/(dx)`.
Find `"dy"/"dx"`, if : `x = cos^-1((2t)/(1 + t^2)), y = sec^-1(sqrt(1 + t^2))`
Find `"dy"/"dx"` if : x = cosec2θ, y = cot3θ at θ= `pi/(6)`
Find `"dy"/"dx"` if : x = a cos3θ, y = a sin3θ at θ = `pi/(3)`
Find `"dy"/"dx"` if : x = t2 + t + 1, y = `sin((pit)/2) + cos((pit)/2) "at" t = 1`
If x = at2 and y = 2at, then show that `xy(d^2y)/(dx^2) + a` = 0.
If y = `e^(mtan^-1x)`, show that `(1 + x^2)(d^2y)/(dx^2) + (2x - m)"dy"/"dx"` = 0.
If x2 + 6xy + y2 = 10, show that `(d^2y)/(dx^2) = (80)/(3x + y)^3`.
Find the nth derivative of the following : (ax + b)m
Find the nth derivative of the following : eax+b
Find the nth derivative of the following : cos x
Find the nth derivative of the following : y = eax . cos (bx + c)
Find the nth derivative of the following:
y = e8x . cos (6x + 7)
Choose the correct option from the given alternatives :
If y = `tan^-1(x/(1 + sqrt(1 - x^2))) + sin[2tan^-1(sqrt((1 - x)/(1 + x)))] "then" "dy"/"dx"` = ...........
Differentiate the following w.r.t. x : `tan^-1((sqrt(x)(3 - x))/(1 - 3x))`
If `sqrt(y + x) + sqrt(y - x)` = c, show that `"dy"/"dx" = y/x - sqrt(y^2/x^2 - 1)`.
Find `"dy"/"dx" if, sqrt"x" + sqrt"y" = sqrt"a"`
Find `"dy"/"dx"` if, yex + xey = 1
If y = `("x" + sqrt("x"^2 - 1))^"m"`, then `("x"^2 - 1) "dy"/"dx"` = ______.
If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x)` is ______
`(dy)/(dx)` of `2x + 3y = sin x` is:-
Find `(dy)/(dx)`, if `y = sin^-1 ((2x)/(1 + x^2))`
If y = y(x) is an implicit function of x such that loge(x + y) = 4xy, then `(d^2y)/(dx^2)` at x = 0 is equal to ______.
Let y = y(x) be a function of x satisfying `ysqrt(1 - x^2) = k - xsqrt(1 - y^2)` where k is a constant and `y(1/2) = -1/4`. Then `(dy)/(dx)` at x = `1/2`, is equal to ______.
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
If log (x+y) = log (xy) + a then show that, `dy/dx= (-y^2)/(x^2)`
Find `dy/dx` if, x = e3t, y = `e^sqrtt`
Find `dy/dx"if", x= e^(3t), y=e^sqrtt`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`
If log(x + y) = log(xy) + a, then show that `dy/dx = (-y^2)/x^2`