Advertisements
Advertisements
प्रश्न
Find the nth derivative of the following:
y = e8x . cos (6x + 7)
उत्तर
y = e8x . cos (6x + 7)
∴ `"dy"/"dx" = "d"/"dx"[e^(8x).cos (6x + 7)]`
= `e^(8x)."d"/"dx"[cos (6x + 7)] + cos (6x + 7)."d"/"dx"(e^(8x))`
= `e^(8x).[-sin(6x + 7)]."d"/"dx"(6x + 7) + cos(6x + 7).e^(8x)."d"/"dx"(8x)`
= – e8x sin (6x + 7) x (b x 1 + 0) + e8xcos(6x + 7) x a x 1
= e8x [a cos (6x + 7) – b sin (6x + 7)]
= `e^(8x).sqrt(a^2 + b^2)[a/sqrt(a^2 + b^2)cos(6x + 7) - b/sqrt(a^2 + b^2)sin(6x + 7)]`
Let `a/sqrt(a^2 + b^2) = cos x and b/sqrt(a^2 + b^2) = sin x`
Then tan ∞ = `b/a`
∴ ∞ = `tan^-1(b/a)`
∴ `"dy"/"dx" = e^(8x).sqrt(a^2 + b^2)[cosoo.cos(bx + c) - sinoo.sin(bx + c)]`
= `e^(8x).(a^2 + b^2)^(1/2).cos(6x + 7 + x)`
`(d^2y)/(dx^2) = "d"/"dx"[e^(8x).(a^2 + b^2)^(1/2).cos(6x + 7 + oo)]`
= `(a^2 + b^2)^(1/2)."d"/"dx"[e^(8x).cos(6x + 7 + oo)]`
= `(a^2 + b^2)^(1/2)[e^(8x)."d"/"dx"{cos(6x + 7 + oo)} + cos(6x + 7 + oo)."d"/"dx"(e^(8x))]`
= `(a^2 + b^2)^(1/2)[e^(8x).{-sin(6x + 7 + oo)}."d"/"dx"(6x + 7 + oo) + cos(6x + 7 + oo).e^(8x)."d"/"dx"(8x)]`
= `(a^2 + b^2)^(1/2)[-e^(8x)sin(6x + 7 + oo) xx (b xx 1 + 0 + 0) + cos(6x + 7 + oo).e^(8x) xx a xx 1]`
= `e^(8x).(a^2 + b^2)^(1/2)[a cos (6x + 7 + oo) - bsin(6x + 7 + oo)]`
= `e^(8x).(a^2 + b^2)^(1/2).sqrt(a^2 + b^2)[a/sqrt(a^2 + b^2)cos(6x + 7 + oo) = b/sqrt(a^2 + b^2)sin(6x + 7 + oo)]`
= `e^(8x).(a^2 + b^2)^(2/2)[cosoo.cos(6x + 7 + ∞) - sinoo.sin(6x + 7 + oo)`
= `e^(8x).(a^2 + b^2)^(2/2).cos(6x + 7 + oo + oo)`
= `e^(8x).(a^2 + b^2)^(2/2).cos(6x + 7 + 2oo)`
Similarly.
`(d^3y)/(dx^3) = e^(8x).(a^2 + b^2)^(3/2).cos(6x + 7 + 3oo)`
In general, the nth order derivative is given by
`(d^ny)/(dx^n) = e^(8x).(a^2 + b^2)^(n/2).cos(6x + 7 + noo)`,
Where ∞ = `tan^-1(b/a)`
∴ `(d^ny)/(dx^n) = e^(8x).(10)^n.cos[6x + 7 + ntan^-1(3/4)]`
APPEARS IN
संबंधित प्रश्न
If xpyq = (x + y)p+q then Prove that `dy/dx = y/x`
Find `dy/dx` in the following:
ax + by2 = cos y
Find `dy/dx` in the following:
sin2 y + cos xy = k
If for the function
\[\Phi \left( x \right) = \lambda x^2 + 7x - 4, \Phi'\left( 5 \right) = 97, \text { find } \lambda .\]
Find the derivative of the function f defined by f (x) = mx + c at x = 0.
Is |sin x| differentiable? What about cos |x|?
If f (x) = |x − 2| write whether f' (2) exists or not.
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
Let \[f\left( x \right)\begin{cases}a x^2 + 1, & x > 1 \\ x + 1/2, & x \leq 1\end{cases}\] . Then, f (x) is derivable at x = 1, if
Differentiate e4x + 5 w.r..t.e3x
Find `(dy)/(dx)` if `y = sin^-1(sqrt(1-x^2))`
If x = tan-1t and y = t3 , find `(dy)/(dx)`.
Discuss extreme values of the function f(x) = x.logx
If ex + ey = ex+y, then show that `"dy"/"dx" = -e^(y - x)`.
If `sin^-1((x^5 - y^5)/(x^5 + y^5)) = pi/(6), "show that" "dy"/"dx" = x^4/(3y^4)`
Find `"dy"/"dx"`, if : x = `sqrt(a^2 + m^2), y = log(a^2 + m^2)`
Find `"dy"/"dx"`, if : x = sinθ, y = tanθ
Find `"dy"/"dx"`, if : `x = cos^-1((2t)/(1 + t^2)), y = sec^-1(sqrt(1 + t^2))`
Find `"dy"/"dx"` if : x = cosec2θ, y = cot3θ at θ= `pi/(6)`
Differentiate xx w.r.t. xsix.
Differentiate `tan^-1((sqrt(1 + x^2) - 1)/(x)) w.r.t tan^-1((2xsqrt(1 - x^2))/(1 - 2x^2))`.
Find `(d^2y)/(dx^2)` of the following : x = a cos θ, y = b sin θ at θ = `π/4`.
If y = `e^(mtan^-1x)`, show that `(1 + x^2)(d^2y)/(dx^2) + (2x - m)"dy"/"dx"` = 0.
If x = cos t, y = emt, show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" - m^2y` = 0.
If y = eax.sin(bx), show that y2 – 2ay1 + (a2 + b2)y = 0.
If x2 + 6xy + y2 = 10, show that `(d^2y)/(dx^2) = (80)/(3x + y)^3`.
If x = a sin t – b cos t, y = a cos t + b sin t, show that `(d^2y)/(dx^2) = -(x^2 + y^2)/(y^3)`.
Find the nth derivative of the following : sin (ax + b)
Find the nth derivative of the following : cos (3 – 2x)
Choose the correct option from the given alternatives :
Let `f(1) = 3, f'(1) = -(1)/(3), g(1) = -4 and g'(1) =-(8)/(3).` The derivative of `sqrt([f(x)]^2 + [g(x)]^2` w.r.t. x at x = 1 is
Choose the correct option from the given alternatives :
If y = sec (tan –1x), then `"dy"/"dx"` at x = 1, is equal to
Choose the correct option from the given alternatives :
If f(x) = `sin^-1((4^(x + 1/2))/(1 + 2^(4x)))`, which of the following is not the derivative of f(x)?
Choose the correct option from the given alternatives :
If y = `tan^-1(x/(1 + sqrt(1 - x^2))) + sin[2tan^-1(sqrt((1 - x)/(1 + x)))] "then" "dy"/"dx"` = ...........
Choose the correct option from the given alternatives :
If `xsqrt(y + 1) + ysqrt(x + 1) = 0 and x ≠ y, "then" "dy"/"dx"` = ........
Choose the correct option from the given alternatives :
If y = `a cos (logx) and "A"(d^2y)/(dx^2) + "B""dy"/"dx" + "C"` = 0, then the values of A, B, C are
Differentiate the following w.r.t. x : `tan^-1((sqrt(x)(3 - x))/(1 - 3x))`
Differentiate the following w.r.t. x : `cos^-1((sqrt(1 + x) - sqrt(1 - x))/2)`
Differentiate the following w.r.t. x : `tan^-1[sqrt((sqrt(1 + x^2) + x)/(sqrt(1 + x^2) - x))]`
If `sqrt(y + x) + sqrt(y - x)` = c, show that `"dy"/"dx" = y/x - sqrt(y^2/x^2 - 1)`.
If y2 = a2cos2x + b2sin2x, show that `y + (d^2y)/(dx^2) = (a^2b^2)/y^3`
Find `"dy"/"dx"` if, yex + xey = 1
If log (x + y) = log (xy) + a then show that, `"dy"/"dx" = (- "y"^2)/"x"^2`.
Solve the following:
If `"e"^"x" + "e"^"y" = "e"^((x + y))` then show that, `"dy"/"dx" = - "e"^"y - x"`.
Choose the correct alternative.
If ax2 + 2hxy + by2 = 0 then `"dy"/"dx" = ?`
Choose the correct alternative.
If `"x"^4."y"^5 = ("x + y")^("m + 1")` then `"dy"/"dx" = "y"/"x"` then m = ?
Find `"dy"/"dx"` if x = `"e"^"3t", "y" = "e"^(sqrt"t")`.
If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x)` is ______
`(dy)/(dx)` of `2x + 3y = sin x` is:-
y = `e^(x3)`
If y = `e^(m tan^-1x)` then show that `(1 + x^2) (d^2y)/(dx^2) + (2x - m) (dy)/(dx)` = 0
If y = y(x) is an implicit function of x such that loge(x + y) = 4xy, then `(d^2y)/(dx^2)` at x = 0 is equal to ______.
If 2x + 2y = 2x+y, then `(dy)/(dx)` is equal to ______.
Let y = y(x) be a function of x satisfying `ysqrt(1 - x^2) = k - xsqrt(1 - y^2)` where k is a constant and `y(1/2) = -1/4`. Then `(dy)/(dx)` at x = `1/2`, is equal to ______.
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Find `dy/dx` if , x = `e^(3t), y = e^(sqrtt)`
Find `dy / dx` if, x = `e^(3t), y = e^sqrt t`
Find `dy/dx` if, `x = e^(3t), y = e^sqrtt`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`