Advertisements
Advertisements
प्रश्न
If 2x + 2y = 2x+y, then `(dy)/(dx)` is equal to ______.
पर्याय
`((2^x + 2^y))/((2^x - 2^y))`
`((2^x + 2^y))/((1 + 2^(x+y))`
`2^(x-y).(2^y - 1)/(1 - 2^x)`
`((2^(x + y) - 2^x))/2^y`
MCQ
रिकाम्या जागा भरा
उत्तर
If 2x + 2y = 2x+y, then `(dy)/(dx)` is equal to `underlinebb(2^(x-y).(2^y - 1)/(1 - 2^x))`.
Explanation:
2x + 2y = 2x+y
⇒ `2^x ln2 + 2^y ln2 (dy)/(dx) = 2^(x + y) ln2(1 + (dy)/(dx))`
`(dy)/(dx) = ((2^x ln2 - 2^y2^x ln2))/((-2^y ln2 + 2^y2^x ln2))`
= `-2^(x - y)[(1 - 2^y)/(1 - 2^x)]`
`(dy)/(dx) = 2^(x-y)[(2^y - 1)/(1 - 2^x)]`
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?