Advertisements
Advertisements
Question
If 2x + 2y = 2x+y, then `(dy)/(dx)` is equal to ______.
Options
`((2^x + 2^y))/((2^x - 2^y))`
`((2^x + 2^y))/((1 + 2^(x+y))`
`2^(x-y).(2^y - 1)/(1 - 2^x)`
`((2^(x + y) - 2^x))/2^y`
MCQ
Fill in the Blanks
Solution
If 2x + 2y = 2x+y, then `(dy)/(dx)` is equal to `underlinebb(2^(x-y).(2^y - 1)/(1 - 2^x))`.
Explanation:
2x + 2y = 2x+y
⇒ `2^x ln2 + 2^y ln2 (dy)/(dx) = 2^(x + y) ln2(1 + (dy)/(dx))`
`(dy)/(dx) = ((2^x ln2 - 2^y2^x ln2))/((-2^y ln2 + 2^y2^x ln2))`
= `-2^(x - y)[(1 - 2^y)/(1 - 2^x)]`
`(dy)/(dx) = 2^(x-y)[(2^y - 1)/(1 - 2^x)]`
shaalaa.com
Is there an error in this question or solution?