मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Choose the correct option from the given alternatives : If y = thendydxtan-1(x1+1-x2)+sin[2tan-1(1-x1+x)]thendydx = ........... - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Choose the correct option from the given alternatives :

If y = `tan^-1(x/(1 + sqrt(1 - x^2))) + sin[2tan^-1(sqrt((1 - x)/(1 + x)))] "then" "dy"/"dx"` = ...........

पर्याय

  • `x/sqrt(1 - x^2)`

  • `(1 - 2x)/sqrt(1 - x^2)`

  • `(1 - 2x)/(2sqrt(1 - x^2)`

  • `(1 - 2x^2)/sqrt(1 - x^2)`

MCQ

उत्तर

`(1 - 2x)/(2sqrt(1 - x^2)`

`y = tan^-1(x/(1 + sqrt(1 - x^2))) + sin[2tan^-1sqrt((1 - x)/(1 + x))]`
Put x = cos θ. Then θ = cos–1x

`∴ y = tan^-1((cosθ)/(1 + sqrt(1 - cos^2θ))) + sin[2tan^-1sqrt((1 - cosθ)/(1 + cosθ))]`

`= tan^-1((cosθ)/(1 + sinθ)) + sin[2tan^-1sqrt((2sin^2(θ/2))/(2cos^2(θ/2)))]`

`= tan^-1[(sin(pi/2 - θ))/(1 + cos(pi/2 - θ))] + sin[2tan^-1(tan  θ/2)]`

`= tan^-1[(2sin(pi/4 - θ/2).cos(pi/4 - θ/2))/(2cos^2(pi/4 - θ/2))] + sin(2 xx θ/2)`

`= tan^-1[tan(pi/4 - θ/2) + sinθ]`

`= pi/4 - θ/2 + sqrt(1 - cos^2θ)`

= `pi/4 - 1/2cos^-1x + sqrt(1 - x^2)`

∴ `"dy"/"dx" = 0 - 1/2 xx (-1)/sqrt(1 - x^2) + (1)/(2sqrt(1 - x^2)) xx (-2x)`

= `(1)/(2sqrt(1 - x^2)) - x/sqrt(1 - x^2)`

= `(1 - 2x)/(2sqrt(1 - x^2))`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Differentiation - Miscellaneous Exercise 1 (I) [पृष्ठ ६२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 1 Differentiation
Miscellaneous Exercise 1 (I) | Q 6 | पृष्ठ ६२

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find `dy/dx` in the following:

xy + y2 = tan x + y


Find `dy/dx` in the following:

sin2 y + cos xy = k


Find `dy/dx` in the following:

sin2 x + cos2 y = 1


Find `dy/dx` in the following:

`y = sin^(-1)((2x)/(1+x^2))`


Show that the derivative of the function f given by 

\[f\left( x \right) = 2 x^3 - 9 x^2 + 12x + 9\], at x = 1 and x = 2 are equal.

Is |sin x| differentiable? What about cos |x|?


If f (x) = |x − 2| write whether f' (2) exists or not.


Write the derivative of f (x) = |x|3 at x = 0.


If  \[\lim_{x \to c} \frac{f\left( x \right) - f\left( c \right)}{x - c}\]  exists finitely, write the value of  \[\lim_{x \to c} f\left( x \right)\]


If x = tan-1t and y = t3 , find `(dy)/(dx)`.


Discuss extreme values of the function f(x) = x.logx


If ex + ey = ex+y, then show that `"dy"/"dx" = -e^(y - x)`.


If `sin^-1((x^5 - y^5)/(x^5 + y^5)) = pi/(6), "show that" "dy"/"dx" = x^4/(3y^4)`


If y = `sqrt(cosx + sqrt(cosx + sqrt(cosx + ... ∞)`, then show that `"dy"/"dx" = sinx/(1 - 2y)`.


Find `"dy"/"dx"`, if : x = `sqrt(a^2 + m^2), y = log(a^2 + m^2)`


Find `"dy"/"dx"`, if : x = a(1 – cosθ), y = b(θ – sinθ)


Find `"dy"/"dx"`, if : x = `(t + 1/t)^a, y = a^(t+1/t)`, where a > 0, a ≠ 1, t ≠ 0.


Find `"dy"/"dx"`, if : `x = cos^-1((2t)/(1 + t^2)), y = sec^-1(sqrt(1 + t^2))`


Find `"dy"/"dx"` if : x = cosec2θ, y = cot3θ at θ= `pi/(6)`


If x = `(t + 1)/(t - 1), y = (t - 1)/(t + 1), "then show that"  y^2 + "dy"/"dx"` = 0.


Differentiate `tan^-1((cosx)/(1 + sinx)) w.r.t. sec^-1 x.`


If y = `e^(mtan^-1x)`, show that `(1 + x^2)(d^2y)/(dx^2) + (2x - m)"dy"/"dx"` = 0.


If x = cos t, y = emt, show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" - m^2y` = 0.


If y = sin (m cos–1x), then show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" + m^2y` = 0.


Find the nth derivative of the following : (ax + b)m 


Find the nth derivative of the following:

`(1)/x`


Find the nth derivative of the following : apx+q 


Find the nth derivative of the following : cos x


Find the nth derivative of the following : `(1)/(3x - 5)`


Choose the correct option from the given alternatives :

If y = sec (tan –1x), then `"dy"/"dx"` at x = 1, is equal to


Choose the correct option from the given alternatives :

If f(x) = `sin^-1((4^(x + 1/2))/(1 + 2^(4x)))`, which of the following is not the derivative of f(x)?


Choose the correct option from the given alternatives :

If y = sin (2sin–1 x), then dx = ........


Choose the correct option from the given alternatives :

If `xsqrt(y + 1) + ysqrt(x + 1) = 0 and x ≠ y, "then" "dy"/"dx"` = ........


Choose the correct option from the given alternatives :

If x = a(cosθ + θ sinθ), y = a(sinθ – θ cosθ), then `((d^2y)/dx^2)_(θ = pi/4)` = .........


Solve the following : 

f(x) = –x, for – 2 ≤ x < 0
= 2x, for 0 ≤ x < 2
= `(18 - x)/(4)`, for 2 < x ≤ 7
g(x) = 6 – 3x, for 0 ≤ x < 2
= `(2x - 4)/(3)`, for 2 < x ≤ 7
Let u (x) = f[g(x)], v(x) = g[f(x)] and w(x) = g[g(x)]. Find each derivative at x = 1, if it exists i.e. find u'(1), v' (1) and w'(1). If it doesn't exist, then explain why?


Differentiate the following w.r.t. x : `tan^-1((sqrt(x)(3 - x))/(1 - 3x))`


If `xsqrt(1 - y^2) + ysqrt(1 - x^2)` = 1, then show that `"dy"/"dx" = -sqrt((1 - y^2)/(1 - x^2)`.


If `x = e^(x/y)`, then show that `"dy"/"dx" = (x - y)/(xlogx)`


If y2 = a2cos2x + b2sin2x, show that `y + (d^2y)/(dx^2) = (a^2b^2)/y^3`


Find `"dy"/"dx" if, sqrt"x" + sqrt"y" = sqrt"a"`


Find `"dy"/"dx"` if, yex + xey = 1 


If log (x + y) = log (xy) + a then show that, `"dy"/"dx" = (- "y"^2)/"x"^2`.


Solve the following:

If `"e"^"x" + "e"^"y" = "e"^((x + y))` then show that, `"dy"/"dx" = - "e"^"y - x"`.


Choose the correct alternative.

If ax2 + 2hxy + by2 = 0 then `"dy"/"dx" = ?` 


If `"x"^7*"y"^9 = ("x + y")^16`, then show that `"dy"/"dx" = "y"/"x"`


If x = a t4 y = 2a t2 then `("d"y)/("d"x)` = ______


If y = `sqrt(tansqrt(x)`, find `("d"y)/("d"x)`.


State whether the following statement is True or False:

If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x) = 1/(2sqrt(x)) + 1/(2sqrt(y)) = 1/(2sqrt("a"))`


Differentiate w.r.t x (over no. 24 and 25) `e^x/sin x`


If y = `e^(m tan^-1x)` then show that `(1 + x^2) (d^2y)/(dx^2) + (2x - m) (dy)/(dx)` = 0


Find `(d^2y)/(dy^2)`, if y = e4x


If y = y(x) is an implicit function of x such that loge(x + y) = 4xy, then `(d^2y)/(dx^2)` at x = 0 is equal to ______.


If 2x + 2y = 2x+y, then `(dy)/(dx)` is equal to ______.


Let y = y(x) be a function of x satisfying `ysqrt(1 - x^2) = k - xsqrt(1 - y^2)` where k is a constant and `y(1/2) = -1/4`. Then `(dy)/(dx)` at x = `1/2`, is equal to ______.


If y = `sqrt(tan x + sqrt(tanx + sqrt(tanx + .... +  ∞)`, then show that `dy/dx = (sec^2x)/(2y - 1)`.

Find `dy/dx` at x = 0.


If `tan ((x + y)/(x - y))` = k, then `dy/dx` is equal to ______.


Find `dy/dx if, x= e^(3t), y = e^sqrtt`


If log(x+y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Find `dy/dx` if , x = `e^(3t), y = e^(sqrtt)`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


If log (x+y) = log (xy) + a then show that, `dy/dx= (-y^2)/(x^2)`


Find `dy / dx` if, x = `e^(3t), y = e^sqrt t` 


Solve the following.

If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Find `dy/dx` if, x = e3t, y = `e^sqrtt`


Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`


If log(x + y) = log(xy) + a then show that, `dy/dx=(-y^2)/x^2`


Find `dy/dx"if", x= e^(3t), y=e^sqrtt`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×