मराठी

Show that the Derivative of the Function F Given by F ( X ) = 2 X 3 − 9 X 2 + 12 X + 9 , at X = 1 and X = 2 Are Equal. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the derivative of the function f given by 

\[f\left( x \right) = 2 x^3 - 9 x^2 + 12x + 9\], at x = 1 and x = 2 are equal.
थोडक्यात उत्तर

उत्तर

Given: 

\[f(x) = 2 x^3 - 9 x^2 + 12x + 9\]

Clearly, being a polynomial function, is differentiable everywhere. Therefore the derivative of 

\[f\] at 
\[x\]  is given by:
`f'(x) = lim_(h→0)f(x +h -f(x))/h`
\[ \Rightarrow f'(x) = \lim_{h \to 0} \frac{2(x + h )^3 - 9(x + h )^2 + 12(x + h) + 9 - 2 x^3 + 9 x^2 - 12x - 9}{h}\]
\[ \Rightarrow f'(x) = \lim_{h \to 0} \frac{2 x^3 + 2 h^3 + 6 x^2 h + 6x h^2 - 9 x^2 - 9 h^2 - 18xh + 12x + 12h + 9 - 2 x^3 + 9 x^2 - 12x - 9}{h}\]
\[ \Rightarrow f'(x) = \lim_{h \to 0} \frac{2 h^3 + 6 x^2 h + 6x h^2 - 9 h^2 - 18xh + 12h}{h}\]
\[ \Rightarrow f'(x) = \lim_{h \to 0} \frac{h( h^2 + 6 x^2 + 6xh - 9h - 18x + 12)}{h}\]
\[ \Rightarrow f'(x) = 6 x^2 - 18x + 12\]

So,

\[f'(1) = 6\left( x^2 - 3x + 2 \right) \]
\[ = 6 \times (1 - 3 + 2) \]
\[ = 0\]
\[f'(2) = 6\left( x^2 - 3x + 2 \right) \]
\[ = 6 \times (4 - 6 + 2) \]
\[ = 0\]

Hence the derivative at 

\[x = 1\] and 
  \[x = 2\]  are equal.
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Differentiability - Exercise 10.2 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 10 Differentiability
Exercise 10.2 | Q 3 | पृष्ठ १६

संबंधित प्रश्‍न

If y=eax ,show that  `xdy/dx=ylogy`


Find dy/dx if x sin y + y sin x = 0.


Find `dy/dx` in the following:

2x + 3y = sin y


Find `dy/dx` in the following.

x3 + x2y + xy2 + y3 = 81


Find `dy/dx` in the following:

`y = sin^(-1)((2x)/(1+x^2))`


if `x^y + y^x = a^b`then Find `dy/dx`


Examine the differentialibilty of the function f defined by

\[f\left( x \right) = \begin{cases}2x + 3 & \text { if }- 3 \leq x \leq - 2 \\ \begin{array}xx + 1 \\ x + 2\end{array} & \begin{array} i\text { if } - 2 \leq x < 0 \\\text {  if } 0 \leq x \leq 1\end{array}\end{cases}\] 


Find `"dy"/"dx"`, if : `x = cos^-1((2t)/(1 + t^2)), y = sec^-1(sqrt(1 + t^2))`


Find `"dy"/"dx"` if : x = t + 2sin (πt), y = 3t – cos (πt) at t = `(1)/(2)`


Find `(d^2y)/(dx^2)` of the following : x = a(θ – sin θ), y = a(1 – cos θ)


Find `(d^2y)/(dx^2)` of the following : x = sinθ, y = sin3θ at θ = `pi/(2)`


If x = at2 and y = 2at, then show that `xy(d^2y)/(dx^2) + a` = 0.


If y = sin (m cos–1x), then show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" + m^2y` = 0.


Find the nth derivative of the following : eax+b 


Find the nth derivative of the following:

y = e8x . cos (6x + 7)


Choose the correct option from the given alternatives : 

Let `f(1) = 3, f'(1) = -(1)/(3), g(1) = -4 and g'(1) =-(8)/(3).` The derivative of `sqrt([f(x)]^2 + [g(x)]^2` w.r.t. x at x = 1 is 


Choose the correct option from the given alternatives :

If f(x) = `sin^-1((4^(x + 1/2))/(1 + 2^(4x)))`, which of the following is not the derivative of f(x)?


Choose the correct option from the given alternatives :

If y = `tan^-1(x/(1 + sqrt(1 - x^2))) + sin[2tan^-1(sqrt((1 - x)/(1 + x)))] "then" "dy"/"dx"` = ...........


Choose the correct option from the given alternatives :

If `xsqrt(y + 1) + ysqrt(x + 1) = 0 and x ≠ y, "then" "dy"/"dx"` = ........


If sin y = x sin (a + y), then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.


If log y = log (sin x) – x2, show that `(d^2y)/(dx^2) + 4x "dy"/"dx" + (4x^2 + 3)y` = 0.


Choose the correct alternative.

If `"x"^4."y"^5 = ("x + y")^("m + 1")` then `"dy"/"dx" = "y"/"x"` then m = ?


If y = `("x" + sqrt("x"^2 - 1))^"m"`, then `("x"^2 - 1) "dy"/"dx"` = ______.


State whether the following is True or False:

The derivative of `"x"^"m"*"y"^"n" = ("x + y")^("m + n")` is `"x"/"y"`


If `"x"^7*"y"^9 = ("x + y")^16`, then show that `"dy"/"dx" = "y"/"x"`


If x2 + y2 = t + `1/"t"` and x4 + y4 = t2 + `1/"t"^2` then `("d"y)/("d"x)` = ______


Find `(dy)/(dx)` if x + sin(x + y) = y – cos(x – y)


If y = `sqrt(tan x + sqrt(tanx + sqrt(tanx + .... +  ∞)`, then show that `dy/dx = (sec^2x)/(2y - 1)`.

Find `dy/dx` at x = 0.


Find `dy/dx if, x= e^(3t), y = e^sqrtt`


If log (x+y) = log (xy) + a then show that, `dy/dx= (-y^2)/(x^2)`


Find `dy/dx` if, `x = e^(3t), y = e^sqrtt`


If log(x + y) = log(xy) + a then show that, `dy/dx=(-y^2)/x^2`


Find `dy/dx"if", x= e^(3t), y=e^sqrtt`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×