मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Choose the correct alternative. If xyx + ym + 1x4.y5=(x + y)m + 1 then dydxyxdydx=yx then m = ? - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Choose the correct alternative.

If `"x"^4."y"^5 = ("x + y")^("m + 1")` then `"dy"/"dx" = "y"/"x"` then m = ?

पर्याय

  • 8

  • 4

  • 5

  • 20

MCQ
बेरीज

उत्तर

8

Explanation:

x4. y5 = (x + y)m + 1           ...(i)

∴ `"d"/"dx" ("x"^4. "y"^5) = "d"/"dx" ("x" + "y")^("m" + 1)`

∴ `"x"^4 "d"/"dx" "y"^5 + "y"^5 "d"/"dx" "x"^4 = ("m" + 1)("x" + "y")^("m" + 1 − 1) . "d"/"dx" ("x" + "y")`

∴ `"x"^4 . 5"y"^4  "d"/"dx" "y"+ "y"^5  4"x"^3 "d"/"dx" "x" = ("m" + 1)("x" + "y")^"m" ["d"/"dx" "x" + "d"/"dx" "y"]`

∴ `5"x"^4"y"^4 "dy"/"dx" + 4"x"^3 "y"^5 . 1 = ("m" + 1)("x" + "y")^"m" [1 + "dy"/"dx"]`

∴ `5"x"^4"y"^4 "dy"/"dx" + 4"x"^3 "y"^5 = ("m" + 1)("x" + "y")^"m" [1 + "dy"/"dx"]`

Put `"dy"/"dx" = "y"/"x"`

∴ `5"x"^((cancel4)3)"y"^4 . "y"/cancel"x" + 4"x"^3 "y"^5 = ("m" + 1)("x" + "y")^"m" [1 + "y"/"x"]`

∴ `5"x"^3"y"^4 . "y" + 4"x"^3 "y"^5 = ("m" + 1)("x" + "y")^"m" [("x" + "y")/"x"]`

∴ `5"x"^3"y"^5 + 4"x"^3 "y"^5 = ("m" + 1)("x" + "y")^"m" [("x" + "y")/"x"]`

∴ `9"x"^3"y"^5 = ("m" + 1)/"x" [("x" + "y")^("m" + 1)]`

∴ `9"x"^3"y"^5 = ("m" + 1)/cancel"x" "x"^((cancel4)3)."y"^5`

∴ `9cancel("x"^3"y"^5) = ("m" + 1) cancel("x"^3"y"^5)`

∴ 9 = m + 1

∴ m = 9 - 1

∴ m = 8

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Differentiation - MISCELLANEOUS EXERCISE - 3 [पृष्ठ ९९]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Differentiation
MISCELLANEOUS EXERCISE - 3 | Q I] 8) | पृष्ठ ९९

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

if `(x^2 + y^2)^2 = xy` find `(dy)/(dx)`


Show that the derivative of the function f given by 

\[f\left( x \right) = 2 x^3 - 9 x^2 + 12x + 9\], at x = 1 and x = 2 are equal.

If  \[f\left( x \right) = x^3 + 7 x^2 + 8x - 9\] 

, find f'(4).


If ex + ey = ex+y, then show that `"dy"/"dx" = -e^(y - x)`.


Find `"dy"/"dx"`, if : x = sinθ, y = tanθ


Find `"dy"/"dx"` if : x = t2 + t + 1, y = `sin((pit)/2) + cos((pit)/2) "at"  t = 1`


DIfferentiate x sin x w.r.t. tan x.


Differentiate `tan^-1((sqrt(1 + x^2) - 1)/(x)) w.r.t  tan^-1((2xsqrt(1 - x^2))/(1 - 2x^2))`.


If y = x + tan x, show that `cos^2x.(d^2y)/(dx^2) - 2y + 2x` = 0.


If `sec^-1((7x^3 - 5y^3)/(7^3 + 5y^3)) = "m", "show"  (d^2y)/(dx^2)` = 0.


If 2y = `sqrt(x + 1) + sqrt(x - 1)`, show that 4(x2 – 1)y2 + 4xy1 – y = 0.


Find the nth derivative of the following : (ax + b)m 


Find the nth derivative of the following : apx+q 


Choose the correct option from the given alternatives : 

Let `f(1) = 3, f'(1) = -(1)/(3), g(1) = -4 and g'(1) =-(8)/(3).` The derivative of `sqrt([f(x)]^2 + [g(x)]^2` w.r.t. x at x = 1 is 


Choose the correct option from the given alternatives :

If f(x) = `sin^-1((4^(x + 1/2))/(1 + 2^(4x)))`, which of the following is not the derivative of f(x)?


Choose the correct option from the given alternatives :

If y = `tan^-1(x/(1 + sqrt(1 - x^2))) + sin[2tan^-1(sqrt((1 - x)/(1 + x)))] "then" "dy"/"dx"` = ...........


If y `tan^-1(sqrt((a - x)/(a +  x)))`, where – a < x < a, then `"dy"/"dx"` = .........


If `sqrt(y + x) + sqrt(y - x)` = c, show that `"dy"/"dx" = y/x - sqrt(y^2/x^2 - 1)`.


If x sin (a + y) + sin a . cos (a + y) = 0, then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.


DIfferentiate `tan^-1((sqrt(1 + x^2) - 1)/x) w.r.t. tan^-1(sqrt((2xsqrt(1 - x^2))/(1 - 2x^2)))`.


If y2 = a2cos2x + b2sin2x, show that `y + (d^2y)/(dx^2) = (a^2b^2)/y^3`


Find `"dy"/"dx"` if, x3 + x2y + xy2 + y3 = 81


Find `"dy"/"dx"` if, xy = log (xy)


Solve the following:

If `"x"^5 * "y"^7 = ("x + y")^12` then show that, `"dy"/"dx" = "y"/"x"`


If x = a t4 y = 2a t2 then `("d"y)/("d"x)` = ______


State whether the following statement is True or False:

If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x) = 1/(2sqrt(x)) + 1/(2sqrt(y)) = 1/(2sqrt("a"))`


Let y = y(x) be a function of x satisfying `ysqrt(1 - x^2) = k - xsqrt(1 - y^2)` where k is a constant and `y(1/2) = -1/4`. Then `(dy)/(dx)` at x = `1/2`, is equal to ______.


If y = `sqrt(tan x + sqrt(tanx + sqrt(tanx + .... +  ∞)`, then show that `dy/dx = (sec^2x)/(2y - 1)`.

Find `dy/dx` at x = 0.


`"If" log(x+y) = log(xy)+a  "then show that", dy/dx=(-y^2)/x^2`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Solve the following.

If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Find `dy/dx` if, x = e3t, y = `e^sqrtt`


Find `dy/dx` if, `x = e^(3t), y = e^sqrtt`


Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×