Advertisements
Advertisements
प्रश्न
Choose the correct alternative.
If `"x"^4."y"^5 = ("x + y")^("m + 1")` then `"dy"/"dx" = "y"/"x"` then m = ?
पर्याय
8
4
5
20
उत्तर
8
Explanation:
x4. y5 = (x + y)m + 1 ...(i)
∴ `"d"/"dx" ("x"^4. "y"^5) = "d"/"dx" ("x" + "y")^("m" + 1)`
∴ `"x"^4 "d"/"dx" "y"^5 + "y"^5 "d"/"dx" "x"^4 = ("m" + 1)("x" + "y")^("m" + 1 − 1) . "d"/"dx" ("x" + "y")`
∴ `"x"^4 . 5"y"^4 "d"/"dx" "y"+ "y"^5 4"x"^3 "d"/"dx" "x" = ("m" + 1)("x" + "y")^"m" ["d"/"dx" "x" + "d"/"dx" "y"]`
∴ `5"x"^4"y"^4 "dy"/"dx" + 4"x"^3 "y"^5 . 1 = ("m" + 1)("x" + "y")^"m" [1 + "dy"/"dx"]`
∴ `5"x"^4"y"^4 "dy"/"dx" + 4"x"^3 "y"^5 = ("m" + 1)("x" + "y")^"m" [1 + "dy"/"dx"]`
Put `"dy"/"dx" = "y"/"x"`
∴ `5"x"^((cancel4)3)"y"^4 . "y"/cancel"x" + 4"x"^3 "y"^5 = ("m" + 1)("x" + "y")^"m" [1 + "y"/"x"]`
∴ `5"x"^3"y"^4 . "y" + 4"x"^3 "y"^5 = ("m" + 1)("x" + "y")^"m" [("x" + "y")/"x"]`
∴ `5"x"^3"y"^5 + 4"x"^3 "y"^5 = ("m" + 1)("x" + "y")^"m" [("x" + "y")/"x"]`
∴ `9"x"^3"y"^5 = ("m" + 1)/"x" [("x" + "y")^("m" + 1)]`
∴ `9"x"^3"y"^5 = ("m" + 1)/cancel"x" "x"^((cancel4)3)."y"^5`
∴ `9cancel("x"^3"y"^5) = ("m" + 1) cancel("x"^3"y"^5)`
∴ 9 = m + 1
∴ m = 9 - 1
∴ m = 8
APPEARS IN
संबंधित प्रश्न
if `(x^2 + y^2)^2 = xy` find `(dy)/(dx)`
Show that the derivative of the function f given by
If \[f\left( x \right) = x^3 + 7 x^2 + 8x - 9\]
, find f'(4).
If ex + ey = ex+y, then show that `"dy"/"dx" = -e^(y - x)`.
Find `"dy"/"dx"`, if : x = sinθ, y = tanθ
Find `"dy"/"dx"` if : x = t2 + t + 1, y = `sin((pit)/2) + cos((pit)/2) "at" t = 1`
DIfferentiate x sin x w.r.t. tan x.
Differentiate `tan^-1((sqrt(1 + x^2) - 1)/(x)) w.r.t tan^-1((2xsqrt(1 - x^2))/(1 - 2x^2))`.
If y = x + tan x, show that `cos^2x.(d^2y)/(dx^2) - 2y + 2x` = 0.
If `sec^-1((7x^3 - 5y^3)/(7^3 + 5y^3)) = "m", "show" (d^2y)/(dx^2)` = 0.
If 2y = `sqrt(x + 1) + sqrt(x - 1)`, show that 4(x2 – 1)y2 + 4xy1 – y = 0.
Find the nth derivative of the following : (ax + b)m
Find the nth derivative of the following : apx+q
Choose the correct option from the given alternatives :
Let `f(1) = 3, f'(1) = -(1)/(3), g(1) = -4 and g'(1) =-(8)/(3).` The derivative of `sqrt([f(x)]^2 + [g(x)]^2` w.r.t. x at x = 1 is
Choose the correct option from the given alternatives :
If f(x) = `sin^-1((4^(x + 1/2))/(1 + 2^(4x)))`, which of the following is not the derivative of f(x)?
Choose the correct option from the given alternatives :
If y = `tan^-1(x/(1 + sqrt(1 - x^2))) + sin[2tan^-1(sqrt((1 - x)/(1 + x)))] "then" "dy"/"dx"` = ...........
If y `tan^-1(sqrt((a - x)/(a + x)))`, where – a < x < a, then `"dy"/"dx"` = .........
If `sqrt(y + x) + sqrt(y - x)` = c, show that `"dy"/"dx" = y/x - sqrt(y^2/x^2 - 1)`.
If x sin (a + y) + sin a . cos (a + y) = 0, then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.
DIfferentiate `tan^-1((sqrt(1 + x^2) - 1)/x) w.r.t. tan^-1(sqrt((2xsqrt(1 - x^2))/(1 - 2x^2)))`.
If y2 = a2cos2x + b2sin2x, show that `y + (d^2y)/(dx^2) = (a^2b^2)/y^3`
Find `"dy"/"dx"` if, x3 + x2y + xy2 + y3 = 81
Find `"dy"/"dx"` if, xy = log (xy)
Solve the following:
If `"x"^5 * "y"^7 = ("x + y")^12` then show that, `"dy"/"dx" = "y"/"x"`
If x = a t4 y = 2a t2 then `("d"y)/("d"x)` = ______
State whether the following statement is True or False:
If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x) = 1/(2sqrt(x)) + 1/(2sqrt(y)) = 1/(2sqrt("a"))`
Let y = y(x) be a function of x satisfying `ysqrt(1 - x^2) = k - xsqrt(1 - y^2)` where k is a constant and `y(1/2) = -1/4`. Then `(dy)/(dx)` at x = `1/2`, is equal to ______.
If y = `sqrt(tan x + sqrt(tanx + sqrt(tanx + .... + ∞)`, then show that `dy/dx = (sec^2x)/(2y - 1)`.
Find `dy/dx` at x = 0.
`"If" log(x+y) = log(xy)+a "then show that", dy/dx=(-y^2)/x^2`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Solve the following.
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Find `dy/dx` if, x = e3t, y = `e^sqrtt`
Find `dy/dx` if, `x = e^(3t), y = e^sqrtt`
Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`