हिंदी

Choose the correct alternative. If xyx + ym + 1x4.y5=(x + y)m + 1 then dydxyxdydx=yx then m = ? - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Choose the correct alternative.

If `"x"^4."y"^5 = ("x + y")^("m + 1")` then `"dy"/"dx" = "y"/"x"` then m = ?

विकल्प

  • 8

  • 4

  • 5

  • 20

MCQ
योग

उत्तर

8

Explanation:

x4. y5 = (x + y)m + 1           ...(i)

∴ `"d"/"dx" ("x"^4. "y"^5) = "d"/"dx" ("x" + "y")^("m" + 1)`

∴ `"x"^4 "d"/"dx" "y"^5 + "y"^5 "d"/"dx" "x"^4 = ("m" + 1)("x" + "y")^("m" + 1 − 1) . "d"/"dx" ("x" + "y")`

∴ `"x"^4 . 5"y"^4  "d"/"dx" "y"+ "y"^5  4"x"^3 "d"/"dx" "x" = ("m" + 1)("x" + "y")^"m" ["d"/"dx" "x" + "d"/"dx" "y"]`

∴ `5"x"^4"y"^4 "dy"/"dx" + 4"x"^3 "y"^5 . 1 = ("m" + 1)("x" + "y")^"m" [1 + "dy"/"dx"]`

∴ `5"x"^4"y"^4 "dy"/"dx" + 4"x"^3 "y"^5 = ("m" + 1)("x" + "y")^"m" [1 + "dy"/"dx"]`

Put `"dy"/"dx" = "y"/"x"`

∴ `5"x"^((cancel4)3)"y"^4 . "y"/cancel"x" + 4"x"^3 "y"^5 = ("m" + 1)("x" + "y")^"m" [1 + "y"/"x"]`

∴ `5"x"^3"y"^4 . "y" + 4"x"^3 "y"^5 = ("m" + 1)("x" + "y")^"m" [("x" + "y")/"x"]`

∴ `5"x"^3"y"^5 + 4"x"^3 "y"^5 = ("m" + 1)("x" + "y")^"m" [("x" + "y")/"x"]`

∴ `9"x"^3"y"^5 = ("m" + 1)/"x" [("x" + "y")^("m" + 1)]`

∴ `9"x"^3"y"^5 = ("m" + 1)/cancel"x" "x"^((cancel4)3)."y"^5`

∴ `9cancel("x"^3"y"^5) = ("m" + 1) cancel("x"^3"y"^5)`

∴ 9 = m + 1

∴ m = 9 - 1

∴ m = 8

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Differentiation - MISCELLANEOUS EXERCISE - 3 [पृष्ठ ९९]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Differentiation
MISCELLANEOUS EXERCISE - 3 | Q I] 8) | पृष्ठ ९९

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

if `x^y + y^x = a^b`then Find `dy/dx`


Is |sin x| differentiable? What about cos |x|?


If  \[\lim_{x \to c} \frac{f\left( x \right) - f\left( c \right)}{x - c}\]  exists finitely, write the value of  \[\lim_{x \to c} f\left( x \right)\]


Find `dy/dx if x^3 + y^2 + xy = 7`


Find `"dy"/"dx"`, if : x = `sqrt(a^2 + m^2), y = log(a^2 + m^2)`


Find `"dy"/"dx"`, if : x = sinθ, y = tanθ


Find `"dy"/"dx"`, if : `x = cos^-1((2t)/(1 + t^2)), y = sec^-1(sqrt(1 + t^2))`


Find `dy/dx` if : x = 2 cos t + cos 2t, y = 2 sin t – sin 2t at t = `pi/(4)`


If x = `(t + 1)/(t - 1), y = (t - 1)/(t + 1), "then show that"  y^2 + "dy"/"dx"` = 0.


If x = cos t, y = emt, show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" - m^2y` = 0.


If 2y = `sqrt(x + 1) + sqrt(x - 1)`, show that 4(x2 – 1)y2 + 4xy1 – y = 0.


If x2 + 6xy + y2 = 10, show that `(d^2y)/(dx^2) = (80)/(3x + y)^3`.


Find the nth derivative of the following : (ax + b)m 


Find the nth derivative of the following : `(1)/(3x - 5)`


Find the nth derivative of the following : y = eax . cos (bx + c)


Find the nth derivative of the following:

y = e8x . cos (6x + 7)


Choose the correct option from the given alternatives :

If y = sec (tan –1x), then `"dy"/"dx"` at x = 1, is equal to


Choose the correct option from the given alternatives :

If y = `a cos (logx) and "A"(d^2y)/(dx^2) + "B""dy"/"dx" + "C"` = 0, then the values of A, B, C are


Differentiate the following w.r.t. x : `cos^-1((sqrt(1 + x) - sqrt(1 - x))/2)`


If y2 = a2cos2x + b2sin2x, show that `y + (d^2y)/(dx^2) = (a^2b^2)/y^3`


If log y = log (sin x) – x2, show that `(d^2y)/(dx^2) + 4x "dy"/"dx" + (4x^2 + 3)y` = 0.


Find `"dy"/"dx"` if, x3 + y3 + 4x3y = 0 


Find `"dy"/"dx"` if, yex + xey = 1 


Choose the correct alternative.

If ax2 + 2hxy + by2 = 0 then `"dy"/"dx" = ?` 


Choose the correct alternative.

If x = `("e"^"t" + "e"^-"t")/2, "y" = ("e"^"t" - "e"^-"t")/2`  then `"dy"/"dx"` = ? 


If x = sin θ, y = tan θ, then find `("d"y)/("d"x)`.


State whether the following statement is True or False:

If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x) = 1/(2sqrt(x)) + 1/(2sqrt(y)) = 1/(2sqrt("a"))`


Differentiate w.r.t x (over no. 24 and 25) `e^x/sin x`


Let y = y(x) be a function of x satisfying `ysqrt(1 - x^2) = k - xsqrt(1 - y^2)` where k is a constant and `y(1/2) = -1/4`. Then `(dy)/(dx)` at x = `1/2`, is equal to ______.


If log(x+y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


If log (x+y) = log (xy) + a then show that, `dy/dx= (-y^2)/(x^2)`


Solve the following.

If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×