Advertisements
Advertisements
प्रश्न
Find the nth derivative of the following : y = eax . cos (bx + c)
उत्तर
y = eax . cos (bx + c)
∴ `"dy"/"dx" = "d"/"dx"[e^(ax).cos[bx + c)]`
= `e^(ax)."d"/"dx"[cos(bx + c)] + cos(bx + c)."d"/"dx"(e^(ax))`
= `e^(ax).[-sin(bx + c)]."d"/"dx"(bx + c) + cos(bx + c).e^(ax)."d"/"dx"(ax)`
= – eax sin (bx + c) x (b x 1 + 0) + eaxcos(bx + c) x a x 1
= eax [a cos (bx + c) – b sin (bx + c)]
= `e^(ax).sqrt(a^2 + b^2)[a/sqrt(a^2 + b^2)cos(bx + c) - b/sqrt(a^2 + b^2)sin(bx + c)]`
Let `a/sqrt(a^2 + b^2) = cos x and b/sqrt(a^2 + b^2) = sin x`
Then tan ∞ = `b/a`
∴ ∞ = `tan^-1(b/a)`
∴ `"dy"/"dx" = e^(ax).sqrt(a^2 + b^2)[cos∞.cos(bx + c) - sin∞.sin(bx + c)]`
= `e^(ax).(a^2 + b^2)^(1/2).cos(bx + c + x)`
`(d^2y)/(dx^2) = "d"/"dx"[e^(ax).(a^2 + b^2)^(1/2).cos(bx + c + ∞)]`
= `(a^2 + b^2)^(1/2)."d"/"dx"[e^(ax).cos(bx + c + ∞)]`
= `(a^2 + b^2)^(1/2)[e^(ax)."d"/"dx"{cos(bx + c + ∞)} + cos(bx + c + ∞)."d"/"dx"(e^(ax))]`
= `(a^2 + b^2)^(1/2)[e^(ax).{-sin(bx + c + ∞)}."d"/"dx"(bx + c + ∞) + cos(bx +c + ∞).e^(ax)."d"/"dx"(ax)]`
= `(a^2 + b^2)^(1/2)[-e^(ax)sin(bx + c + ∞) xx (b xx 1 + 0 + 0) + cos(bx + c + ∞).e^(ax) xx a xx 1]`
= `e^(ax).(a^2 + b^2)^(1/2)[a cos (bx + c + ∞) - bsin(bx + c + ∞)]`
= `e^(ax).(a^2 + b^2)^(1/2).sqrt(a^2 + b^2)[a/sqrt(a^2 + b^2)cos(bx + c + ∞) = b/sqrt(a^2 + b^2)sin(bx + c + ∞)]`
= `e^(ax).(a^2 + b^2)^(2/2)[cos∞.cos(bx + c + ∞) - sin∞.sin(bx + c + ∞)`
= `e^(ax).(a^2 + b^2)^(2/2).cos(bx + c + ∞ + ∞)`
= `e^(ax).(a^2 + b^2)^(2/2).cos(bx + c + 2∞)`
Similarly.
`(d^3y)/(dx^3) = e^(ax).(a^2 + b^2)^(3/2).cos(bx + c + 3∞)`
In general, the nth order derivative is given by
`(d^ny)/(dx^n) = e^(ax).(a^2 + b^2)^(n/2).cos(bx + c + n oo)`,
Where ∞ = `tan^-1(b/a)`
∴ `(d^ny)/(dx^n) = e^(ax).(a^2 + b^2)^(n/2).cos[bx + c + ntan^-1(b/a)]`.
APPEARS IN
संबंधित प्रश्न
If y=eax ,show that `xdy/dx=ylogy`
Find dy/dx if x sin y + y sin x = 0.
Find `dy/dx` in the following:
2x + 3y = sin x
Find `dy/dx` in the following:
2x + 3y = sin y
Find `dy/dx` in the following:
xy + y2 = tan x + y
Find `dy/dx` in the following.
x3 + x2y + xy2 + y3 = 81
Find `dy/dx` in the following:
sin2 x + cos2 y = 1
Find `dy/dx` in the following:
`y = sin^(-1)((2x)/(1+x^2))`
If \[\lim_{x \to c} \frac{f\left( x \right) - f\left( c \right)}{x - c}\] exists finitely, write the value of \[\lim_{x \to c} f\left( x \right)\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
Find `dy/dx if x^3 + y^2 + xy = 7`
Find `"dy"/"dx"` ; if x = sin3θ , y = cos3θ
Find `(dy)/(dx)` if `y = sin^-1(sqrt(1-x^2))`
Discuss extreme values of the function f(x) = x.logx
If ex + ey = ex+y, then show that `"dy"/"dx" = -e^(y - x)`.
If y = `sqrt(cosx + sqrt(cosx + sqrt(cosx + ... ∞)`, then show that `"dy"/"dx" = sinx/(1 - 2y)`.
Find `"dy"/"dx"` if x = a cot θ, y = b cosec θ
Find `"dy"/"dx"`, if : x = `sqrt(a^2 + m^2), y = log(a^2 + m^2)`
Find `"dy"/"dx"`, if : x = a(1 – cosθ), y = b(θ – sinθ)
Find `"dy"/"dx"`, if : `x = cos^-1(4t^3 - 3t), y = tan^-1(sqrt(1 - t^2)/t)`.
DIfferentiate x sin x w.r.t. tan x.
Differentiate `tan^-1((cosx)/(1 + sinx)) w.r.t. sec^-1 x.`
Differentiate xx w.r.t. xsix.
Find `(d^2y)/(dx^2)` of the following : x = a(θ – sin θ), y = a(1 – cos θ)
If x = at2 and y = 2at, then show that `xy(d^2y)/(dx^2) + a` = 0.
If x = cos t, y = emt, show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" - m^2y` = 0.
If x2 + 6xy + y2 = 10, show that `(d^2y)/(dx^2) = (80)/(3x + y)^3`.
If x = a sin t – b cos t, y = a cos t + b sin t, show that `(d^2y)/(dx^2) = -(x^2 + y^2)/(y^3)`.
Find the nth derivative of the following : cos x
Find the nth derivative of the following : cos (3 – 2x)
Choose the correct option from the given alternatives :
Let `f(1) = 3, f'(1) = -(1)/(3), g(1) = -4 and g'(1) =-(8)/(3).` The derivative of `sqrt([f(x)]^2 + [g(x)]^2` w.r.t. x at x = 1 is
Choose the correct option from the given alternatives :
If f(x) = `sin^-1((4^(x + 1/2))/(1 + 2^(4x)))`, which of the following is not the derivative of f(x)?
Choose the correct option from the given alternatives :
If y = sin (2sin–1 x), then dx = ........
Choose the correct option from the given alternatives :
If y = `tan^-1(x/(1 + sqrt(1 - x^2))) + sin[2tan^-1(sqrt((1 - x)/(1 + x)))] "then" "dy"/"dx"` = ...........
Choose the correct option from the given alternatives :
If y = `a cos (logx) and "A"(d^2y)/(dx^2) + "B""dy"/"dx" + "C"` = 0, then the values of A, B, C are
Differentiate the following w.r.t. x : `cos^-1((sqrt(1 + x) - sqrt(1 - x))/2)`
Differentiate the following w.r.t. x:
`tan^-1(x/(1 + 6x^2)) + cot^-1((1 - 10x^2)/(7x))`
If `sqrt(y + x) + sqrt(y - x)` = c, show that `"dy"/"dx" = y/x - sqrt(y^2/x^2 - 1)`.
If sin y = x sin (a + y), then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.
DIfferentiate `tan^-1((sqrt(1 + x^2) - 1)/x) w.r.t. tan^-1(sqrt((2xsqrt(1 - x^2))/(1 - 2x^2)))`.
Differentiate `tan^-1((sqrt(1 + x^2) - 1)/x)` w.r.t. `cos^-1(sqrt((1 + sqrt(1 + x^2))/(2sqrt(1 + x^2))))`
If y2 = a2cos2x + b2sin2x, show that `y + (d^2y)/(dx^2) = (a^2b^2)/y^3`
Solve the following:
If `"x"^5 * "y"^7 = ("x + y")^12` then show that, `"dy"/"dx" = "y"/"x"`
If log (x + y) = log (xy) + a then show that, `"dy"/"dx" = (- "y"^2)/"x"^2`.
Solve the following:
If `"e"^"x" + "e"^"y" = "e"^((x + y))` then show that, `"dy"/"dx" = - "e"^"y - x"`.
Choose the correct alternative.
If y = 5x . x5, then `"dy"/"dx" = ?`
Find `"dy"/"dx"` if x = `"e"^"3t", "y" = "e"^(sqrt"t")`.
If x2 + y2 = t + `1/"t"` and x4 + y4 = t2 + `1/"t"^2` then `("d"y)/("d"x)` = ______
If x = a t4 y = 2a t2 then `("d"y)/("d"x)` = ______
If y = `e^(m tan^-1x)` then show that `(1 + x^2) (d^2y)/(dx^2) + (2x - m) (dy)/(dx)` = 0
Find `(d^2y)/(dy^2)`, if y = e4x
Let y = y(x) be a function of x satisfying `ysqrt(1 - x^2) = k - xsqrt(1 - y^2)` where k is a constant and `y(1/2) = -1/4`. Then `(dy)/(dx)` at x = `1/2`, is equal to ______.
If y = `sqrt(tan x + sqrt(tanx + sqrt(tanx + .... + ∞)`, then show that `dy/dx = (sec^2x)/(2y - 1)`.
Find `dy/dx` at x = 0.
If `tan ((x + y)/(x - y))` = k, then `dy/dx` is equal to ______.
`"If" log(x+y) = log(xy)+a "then show that", dy/dx=(-y^2)/x^2`
If log (x + y) = log (xy) + a then show that, `dy/dx = (−y^2)/x^ 2`
Find `dy/dx if , x = e^(3t) , y = e^sqrtt`
If y = `(x + sqrt(x^2 - 1))^m`, show that `(x^2 - 1)(d^2y)/(dx^2) + xdy/dx` = m2y
Find `dy / dx` if, x = `e^(3t), y = e^sqrt t`
Find `dy/dx` if, x = e3t, y = `e^sqrtt`
Find `dy/dx` if, `x = e^(3t), y = e^sqrtt`
Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Find `dy/(dx) "if" , x = e^(3t), y = e^sqrtt`.
Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`