Advertisements
Advertisements
Question
Find the nth derivative of the following : y = eax . cos (bx + c)
Solution
y = eax . cos (bx + c)
∴ `"dy"/"dx" = "d"/"dx"[e^(ax).cos[bx + c)]`
= `e^(ax)."d"/"dx"[cos(bx + c)] + cos(bx + c)."d"/"dx"(e^(ax))`
= `e^(ax).[-sin(bx + c)]."d"/"dx"(bx + c) + cos(bx + c).e^(ax)."d"/"dx"(ax)`
= – eax sin (bx + c) x (b x 1 + 0) + eaxcos(bx + c) x a x 1
= eax [a cos (bx + c) – b sin (bx + c)]
= `e^(ax).sqrt(a^2 + b^2)[a/sqrt(a^2 + b^2)cos(bx + c) - b/sqrt(a^2 + b^2)sin(bx + c)]`
Let `a/sqrt(a^2 + b^2) = cos x and b/sqrt(a^2 + b^2) = sin x`
Then tan ∞ = `b/a`
∴ ∞ = `tan^-1(b/a)`
∴ `"dy"/"dx" = e^(ax).sqrt(a^2 + b^2)[cos∞.cos(bx + c) - sin∞.sin(bx + c)]`
= `e^(ax).(a^2 + b^2)^(1/2).cos(bx + c + x)`
`(d^2y)/(dx^2) = "d"/"dx"[e^(ax).(a^2 + b^2)^(1/2).cos(bx + c + ∞)]`
= `(a^2 + b^2)^(1/2)."d"/"dx"[e^(ax).cos(bx + c + ∞)]`
= `(a^2 + b^2)^(1/2)[e^(ax)."d"/"dx"{cos(bx + c + ∞)} + cos(bx + c + ∞)."d"/"dx"(e^(ax))]`
= `(a^2 + b^2)^(1/2)[e^(ax).{-sin(bx + c + ∞)}."d"/"dx"(bx + c + ∞) + cos(bx +c + ∞).e^(ax)."d"/"dx"(ax)]`
= `(a^2 + b^2)^(1/2)[-e^(ax)sin(bx + c + ∞) xx (b xx 1 + 0 + 0) + cos(bx + c + ∞).e^(ax) xx a xx 1]`
= `e^(ax).(a^2 + b^2)^(1/2)[a cos (bx + c + ∞) - bsin(bx + c + ∞)]`
= `e^(ax).(a^2 + b^2)^(1/2).sqrt(a^2 + b^2)[a/sqrt(a^2 + b^2)cos(bx + c + ∞) = b/sqrt(a^2 + b^2)sin(bx + c + ∞)]`
= `e^(ax).(a^2 + b^2)^(2/2)[cos∞.cos(bx + c + ∞) - sin∞.sin(bx + c + ∞)`
= `e^(ax).(a^2 + b^2)^(2/2).cos(bx + c + ∞ + ∞)`
= `e^(ax).(a^2 + b^2)^(2/2).cos(bx + c + 2∞)`
Similarly.
`(d^3y)/(dx^3) = e^(ax).(a^2 + b^2)^(3/2).cos(bx + c + 3∞)`
In general, the nth order derivative is given by
`(d^ny)/(dx^n) = e^(ax).(a^2 + b^2)^(n/2).cos(bx + c + n oo)`,
Where ∞ = `tan^-1(b/a)`
∴ `(d^ny)/(dx^n) = e^(ax).(a^2 + b^2)^(n/2).cos[bx + c + ntan^-1(b/a)]`.
APPEARS IN
RELATED QUESTIONS
If xpyq = (x + y)p+q then Prove that `dy/dx = y/x`
Find dy/dx if x sin y + y sin x = 0.
Find `dy/dx` in the following:
2x + 3y = sin x
Find `dy/dx` in the following:
ax + by2 = cos y
Find `dx/dy` in the following.
x2 + xy + y2 = 100
Find `dy/dx` in the following:
sin2 x + cos2 y = 1
Find `dy/dx` in the following:
`y = sin^(-1)((2x)/(1+x^2))`
Show that the derivative of the function f given by
If for the function
\[\Phi \left( x \right) = \lambda x^2 + 7x - 4, \Phi'\left( 5 \right) = 97, \text { find } \lambda .\]
If \[f\left( x \right) = x^3 + 7 x^2 + 8x - 9\]
, find f'(4).
Find the derivative of the function f defined by f (x) = mx + c at x = 0.
Write the derivative of f (x) = |x|3 at x = 0.
If \[\lim_{x \to c} \frac{f\left( x \right) - f\left( c \right)}{x - c}\] exists finitely, write the value of \[\lim_{x \to c} f\left( x \right)\]
Find `(dy)/(dx) if y = cos^-1 (√x)`
If x = tan-1t and y = t3 , find `(dy)/(dx)`.
If `sin^-1((x^5 - y^5)/(x^5 + y^5)) = pi/(6), "show that" "dy"/"dx" = x^4/(3y^4)`
If y = `sqrt(cosx + sqrt(cosx + sqrt(cosx + ... ∞)`, then show that `"dy"/"dx" = sinx/(1 - 2y)`.
Find `"dy"/"dx"` if x = at2, y = 2at.
Find `"dy"/"dx"` if x = a cot θ, y = b cosec θ
Find `"dy"/"dx"` if : x = cosec2θ, y = cot3θ at θ= `pi/(6)`
Find `"dy"/"dx"` if : x = a cos3θ, y = a sin3θ at θ = `pi/(3)`
Differentiate `sin^-1((2x)/(1 + x^2))w.r.t. cos^-1((1 - x^2)/(1 + x^2))`
Find `(d^2y)/(dx^2)` of the following : x = sinθ, y = sin3θ at θ = `pi/(2)`
Find `(d^2y)/(dx^2)` of the following : x = a cos θ, y = b sin θ at θ = `π/4`.
If x = cos t, y = emt, show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" - m^2y` = 0.
If 2y = `sqrt(x + 1) + sqrt(x - 1)`, show that 4(x2 – 1)y2 + 4xy1 – y = 0.
If x2 + 6xy + y2 = 10, show that `(d^2y)/(dx^2) = (80)/(3x + y)^3`.
Find the nth derivative of the following:
`(1)/x`
Find the nth derivative of the following : sin (ax + b)
Choose the correct option from the given alternatives :
If y = `tan^-1(x/(1 + sqrt(1 - x^2))) + sin[2tan^-1(sqrt((1 - x)/(1 + x)))] "then" "dy"/"dx"` = ...........
Choose the correct option from the given alternatives :
If x = a(cosθ + θ sinθ), y = a(sinθ – θ cosθ), then `((d^2y)/dx^2)_(θ = pi/4)` = .........
Choose the correct option from the given alternatives :
If y = `a cos (logx) and "A"(d^2y)/(dx^2) + "B""dy"/"dx" + "C"` = 0, then the values of A, B, C are
Differentiate the following w.r.t. x : `sin[2tan^-1(sqrt((1 - x)/(1 + x)))]`
Differentiate the following w.r.t. x : `cos^-1((sqrt(1 + x) - sqrt(1 - x))/2)`
Differentiate the following w.r.t. x:
`tan^-1(x/(1 + 6x^2)) + cot^-1((1 - 10x^2)/(7x))`
If `xsqrt(1 - y^2) + ysqrt(1 - x^2)` = 1, then show that `"dy"/"dx" = -sqrt((1 - y^2)/(1 - x^2)`.
If `x = e^(x/y)`, then show that `"dy"/"dx" = (x - y)/(xlogx)`
Differentiate `tan^-1((sqrt(1 + x^2) - 1)/x)` w.r.t. `cos^-1(sqrt((1 + sqrt(1 + x^2))/(2sqrt(1 + x^2))))`
If log y = log (sin x) – x2, show that `(d^2y)/(dx^2) + 4x "dy"/"dx" + (4x^2 + 3)y` = 0.
Find `"dy"/"dx"` if, x3 + y3 + 4x3y = 0
Solve the following:
If `"x"^5 * "y"^7 = ("x + y")^12` then show that, `"dy"/"dx" = "y"/"x"`
If log (x + y) = log (xy) + a then show that, `"dy"/"dx" = (- "y"^2)/"x"^2`.
Solve the following:
If `"e"^"x" + "e"^"y" = "e"^((x + y))` then show that, `"dy"/"dx" = - "e"^"y - x"`.
Choose the correct alternative.
If x = `("e"^"t" + "e"^-"t")/2, "y" = ("e"^"t" - "e"^-"t")/2` then `"dy"/"dx"` = ?
If x = a t4 y = 2a t2 then `("d"y)/("d"x)` = ______
If y = `sqrt(tansqrt(x)`, find `("d"y)/("d"x)`.
`(dy)/(dx)` of `2x + 3y = sin x` is:-
`(dy)/(dx)` of `xy + y^2 = tan x + y` is
Find `(dy)/(dx)`, if `y = sin^-1 ((2x)/(1 + x^2))`
Differentiate w.r.t x (over no. 24 and 25) `e^x/sin x`
Find `(dy)/(dx)` if x + sin(x + y) = y – cos(x – y)
If 2x + 2y = 2x+y, then `(dy)/(dx)` is equal to ______.
If `tan ((x + y)/(x - y))` = k, then `dy/dx` is equal to ______.
If log (x+y) = log (xy) + a then show that, `dy/dx= (-y^2)/(x^2)`
Solve the following.
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
If log(x + y) = log(xy) + a then show that, `dy/dx=(-y^2)/x^2`
Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
If log(x + y) = log(xy) + a, then show that `dy/dx = (-y^2)/x^2`