English

Find the nth derivative of the following: y = e8x . cos (6x + 7) - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the nth derivative of the following:

y = e8x . cos (6x + 7)

Sum

Solution

y = e8x . cos (6x + 7)

∴ `"dy"/"dx" = "d"/"dx"[e^(8x).cos (6x + 7)]`

= `e^(8x)."d"/"dx"[cos (6x + 7)] + cos (6x + 7)."d"/"dx"(e^(8x))`

= `e^(8x).[-sin(6x + 7)]."d"/"dx"(6x + 7) + cos(6x + 7).e^(8x)."d"/"dx"(8x)`

= – e8x sin (6x + 7) x (b x 1 + 0) + e8xcos(6x + 7) x a x 1

= e8x [a cos (6x + 7) – b sin (6x + 7)]

= `e^(8x).sqrt(a^2 + b^2)[a/sqrt(a^2 + b^2)cos(6x + 7) - b/sqrt(a^2 + b^2)sin(6x + 7)]`

Let `a/sqrt(a^2 + b^2) = cos x and b/sqrt(a^2 + b^2) = sin x`

Then tan ∞ = `b/a`

∴ ∞ = `tan^-1(b/a)`

∴ `"dy"/"dx" = e^(8x).sqrt(a^2 + b^2)[cosoo.cos(bx + c) - sinoo.sin(bx + c)]`

= `e^(8x).(a^2 + b^2)^(1/2).cos(6x + 7 + x)`

`(d^2y)/(dx^2) = "d"/"dx"[e^(8x).(a^2 + b^2)^(1/2).cos(6x + 7 + oo)]`

= `(a^2 + b^2)^(1/2)."d"/"dx"[e^(8x).cos(6x + 7 + oo)]`

= `(a^2 + b^2)^(1/2)[e^(8x)."d"/"dx"{cos(6x + 7 + oo)} + cos(6x + 7 + oo)."d"/"dx"(e^(8x))]`

= `(a^2 + b^2)^(1/2)[e^(8x).{-sin(6x + 7 + oo)}."d"/"dx"(6x + 7 + oo) + cos(6x + 7 + oo).e^(8x)."d"/"dx"(8x)]`

= `(a^2 + b^2)^(1/2)[-e^(8x)sin(6x + 7 + oo) xx (b xx 1 + 0 + 0) + cos(6x + 7 + oo).e^(8x) xx a xx 1]`

= `e^(8x).(a^2 + b^2)^(1/2)[a cos (6x + 7 + oo) - bsin(6x + 7 + oo)]`

= `e^(8x).(a^2 + b^2)^(1/2).sqrt(a^2 + b^2)[a/sqrt(a^2 + b^2)cos(6x + 7 + oo) = b/sqrt(a^2 + b^2)sin(6x + 7 + oo)]`

= `e^(8x).(a^2 + b^2)^(2/2)[cosoo.cos(6x + 7 + ∞) - sinoo.sin(6x + 7 + oo)`

= `e^(8x).(a^2 + b^2)^(2/2).cos(6x + 7 + oo + oo)`

= `e^(8x).(a^2 + b^2)^(2/2).cos(6x + 7 + 2oo)`
Similarly.
`(d^3y)/(dx^3) = e^(8x).(a^2 + b^2)^(3/2).cos(6x + 7 + 3oo)`
In general, the nth order derivative is given by
`(d^ny)/(dx^n) = e^(8x).(a^2 + b^2)^(n/2).cos(6x + 7 + noo)`,

Where ∞ = `tan^-1(b/a)`

∴ `(d^ny)/(dx^n) = e^(8x).(10)^n.cos[6x + 7 + ntan^-1(3/4)]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Differentiation - Exercise 1.5 [Page 60]

RELATED QUESTIONS

If y=eax ,show that  `xdy/dx=ylogy`


If xpyq = (x + y)p+q then Prove that `dy/dx = y/x`


Find `dy/dx` in the following:

ax + by2 = cos y


Find `dy/dx` in the following.

x3 + x2y + xy2 + y3 = 81


Find `dy/dx` in the following:

sin2 y + cos xy = k


if `(x^2 + y^2)^2 = xy` find `(dy)/(dx)`


If for the function 

\[\Phi \left( x \right) = \lambda x^2 + 7x - 4, \Phi'\left( 5 \right) = 97, \text { find } \lambda .\]


If  \[f\left( x \right) = x^3 + 7 x^2 + 8x - 9\] 

, find f'(4).


Find the derivative of the function f defined by f (x) = mx + c at x = 0.


If f (x) = |x − 2| write whether f' (2) exists or not.


Write the derivative of f (x) = |x|3 at x = 0.


If  \[\lim_{x \to c} \frac{f\left( x \right) - f\left( c \right)}{x - c}\]  exists finitely, write the value of  \[\lim_{x \to c} f\left( x \right)\]


Let \[f\left( x \right)\begin{cases}a x^2 + 1, & x > 1 \\ x + 1/2, & x \leq 1\end{cases}\] . Then, f (x) is derivable at x = 1, if 


Find `dy/dx if x^3 + y^2 + xy = 7`


Find `"dy"/"dx"` ; if x = sin3θ , y = cos3θ


Find `(dy)/(dx) , "If"   x^3 + y^2 + xy = 10`


Discuss extreme values of the function f(x) = x.logx


Find `"dy"/"dx"` if x = at2, y = 2at.


Find `"dy"/"dx"`, if : x = `sqrt(a^2 + m^2), y = log(a^2 + m^2)`


Find `"dy"/"dx"`, if : x = sinθ, y = tanθ


Find `"dy"/"dx"`, if : x = a(1 – cosθ), y = b(θ – sinθ)


Find `"dy"/"dx"`, if : `x = cos^-1((2t)/(1 + t^2)), y = sec^-1(sqrt(1 + t^2))`


Differentiate `tan^-1((x)/(sqrt(1 - x^2))) w.r.t. sec^-1((1)/(2x^2 - 1))`.


Differentiate `cos^-1((1 - x^2)/(1 + x^2)) w.r.t. tan^-1 x.`


Differentiate xx w.r.t. xsix.


Find `(d^2y)/(dx^2)` of the following : x = sinθ, y = sin3θ at θ = `pi/(2)`


If x = at2 and y = 2at, then show that `xy(d^2y)/(dx^2) + a` = 0.


If x = cos t, y = emt, show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" - m^2y` = 0.


If y = eax.sin(bx), show that y2 – 2ay1 + (a2 + b2)y = 0.


If 2y = `sqrt(x + 1) + sqrt(x - 1)`, show that 4(x2 – 1)y2 + 4xy1 – y = 0.


If y = sin (m cos–1x), then show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" + m^2y` = 0.


Find the nth derivative of the following : apx+q 


Find the nth derivative of the following : cos x


Find the nth derivative of the following : cos (3 – 2x)


Choose the correct option from the given alternatives :

If y = `a cos (logx) and "A"(d^2y)/(dx^2) + "B""dy"/"dx" + "C"` = 0, then the values of A, B, C are


Solve the following : 

f(x) = –x, for – 2 ≤ x < 0
= 2x, for 0 ≤ x < 2
= `(18 - x)/(4)`, for 2 < x ≤ 7
g(x) = 6 – 3x, for 0 ≤ x < 2
= `(2x - 4)/(3)`, for 2 < x ≤ 7
Let u (x) = f[g(x)], v(x) = g[f(x)] and w(x) = g[g(x)]. Find each derivative at x = 1, if it exists i.e. find u'(1), v' (1) and w'(1). If it doesn't exist, then explain why?


Differentiate the following w.r.t. x : `sin^2[cot^-1(sqrt((1 + x)/(1 - x)))]`


Differentiate the following w.r.t. x : `cos^-1((sqrt(1 + x) - sqrt(1 - x))/2)`


Differentiate the following w.r.t. x:

`tan^-1(x/(1 + 6x^2)) + cot^-1((1 - 10x^2)/(7x))`


If x sin (a + y) + sin a . cos (a + y) = 0, then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.


If sin y = x sin (a + y), then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.


Differentiate `tan^-1((sqrt(1 + x^2) - 1)/x)` w.r.t. `cos^-1(sqrt((1 + sqrt(1 + x^2))/(2sqrt(1 + x^2))))`


If log y = log (sin x) – x2, show that `(d^2y)/(dx^2) + 4x "dy"/"dx" + (4x^2 + 3)y` = 0.


If x= a cos θ, y = b sin θ, show that `a^2[y(d^2y)/(dx^2) + (dy/dx)^2] + b^2` = 0.


If y = Aemx + Benx, show that y2 – (m + n)y1 + mny = 0.


Find `"dy"/"dx"` if, x3 + y3 + 4x3y = 0 


Find `"dy"/"dx"` if, `"x"^"y" = "e"^("x - y")`


If log (x + y) = log (xy) + a then show that, `"dy"/"dx" = (- "y"^2)/"x"^2`.


Choose the correct alternative.

If `"x"^4."y"^5 = ("x + y")^("m + 1")` then `"dy"/"dx" = "y"/"x"` then m = ?


If y = `("x" + sqrt("x"^2 - 1))^"m"`, then `("x"^2 - 1) "dy"/"dx"` = ______.


If `"x"^"a"*"y"^"b" = ("x + y")^("a + b")`, then show that `"dy"/"dx" = "y"/"x"`


If x2 + y2 = 1, then `(d^2x)/(dy^2)` = ______.


If x2 + y2 = t + `1/"t"` and x4 + y4 = t2 + `1/"t"^2` then `("d"y)/("d"x)` = ______


If x = a t4 y = 2a t2 then `("d"y)/("d"x)` = ______


If y = `sqrt(tansqrt(x)`, find `("d"y)/("d"x)`.


If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x)` is ______


`(dy)/(dx)` of `xy + y^2 = tan x + y` is


y = `e^(x3)`


If y = `e^(m tan^-1x)` then show that `(1 + x^2) (d^2y)/(dx^2) + (2x - m) (dy)/(dx)` = 0


Find `(dy)/(dx)` if x + sin(x + y) = y – cos(x – y)


If y = y(x) is an implicit function of x such that loge(x + y) = 4xy, then `(d^2y)/(dx^2)` at x = 0 is equal to ______.


Let y = y(x) be a function of x satisfying `ysqrt(1 - x^2) = k - xsqrt(1 - y^2)` where k is a constant and `y(1/2) = -1/4`. Then `(dy)/(dx)` at x = `1/2`, is equal to ______.


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


If log (x + y) = log (xy) + a then show that, `dy/dx = (−y^2)/x^ 2`


Find `dy / dx` if, x = `e^(3t), y = e^sqrt t` 


Find `dy/dx` if, `x = e^(3t), y = e^sqrtt`


If log(x + y) = log(xy) + a then show that, `dy/dx=(-y^2)/x^2`


Find `dy/(dx)  "if" , x = e^(3t), y = e^sqrtt`. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×