हिंदी

Find the nth derivative of the following: y = e8x . cos (6x + 7) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the nth derivative of the following:

y = e8x . cos (6x + 7)

योग

उत्तर

y = e8x . cos (6x + 7)

∴ `"dy"/"dx" = "d"/"dx"[e^(8x).cos (6x + 7)]`

= `e^(8x)."d"/"dx"[cos (6x + 7)] + cos (6x + 7)."d"/"dx"(e^(8x))`

= `e^(8x).[-sin(6x + 7)]."d"/"dx"(6x + 7) + cos(6x + 7).e^(8x)."d"/"dx"(8x)`

= – e8x sin (6x + 7) x (b x 1 + 0) + e8xcos(6x + 7) x a x 1

= e8x [a cos (6x + 7) – b sin (6x + 7)]

= `e^(8x).sqrt(a^2 + b^2)[a/sqrt(a^2 + b^2)cos(6x + 7) - b/sqrt(a^2 + b^2)sin(6x + 7)]`

Let `a/sqrt(a^2 + b^2) = cos x and b/sqrt(a^2 + b^2) = sin x`

Then tan ∞ = `b/a`

∴ ∞ = `tan^-1(b/a)`

∴ `"dy"/"dx" = e^(8x).sqrt(a^2 + b^2)[cosoo.cos(bx + c) - sinoo.sin(bx + c)]`

= `e^(8x).(a^2 + b^2)^(1/2).cos(6x + 7 + x)`

`(d^2y)/(dx^2) = "d"/"dx"[e^(8x).(a^2 + b^2)^(1/2).cos(6x + 7 + oo)]`

= `(a^2 + b^2)^(1/2)."d"/"dx"[e^(8x).cos(6x + 7 + oo)]`

= `(a^2 + b^2)^(1/2)[e^(8x)."d"/"dx"{cos(6x + 7 + oo)} + cos(6x + 7 + oo)."d"/"dx"(e^(8x))]`

= `(a^2 + b^2)^(1/2)[e^(8x).{-sin(6x + 7 + oo)}."d"/"dx"(6x + 7 + oo) + cos(6x + 7 + oo).e^(8x)."d"/"dx"(8x)]`

= `(a^2 + b^2)^(1/2)[-e^(8x)sin(6x + 7 + oo) xx (b xx 1 + 0 + 0) + cos(6x + 7 + oo).e^(8x) xx a xx 1]`

= `e^(8x).(a^2 + b^2)^(1/2)[a cos (6x + 7 + oo) - bsin(6x + 7 + oo)]`

= `e^(8x).(a^2 + b^2)^(1/2).sqrt(a^2 + b^2)[a/sqrt(a^2 + b^2)cos(6x + 7 + oo) = b/sqrt(a^2 + b^2)sin(6x + 7 + oo)]`

= `e^(8x).(a^2 + b^2)^(2/2)[cosoo.cos(6x + 7 + ∞) - sinoo.sin(6x + 7 + oo)`

= `e^(8x).(a^2 + b^2)^(2/2).cos(6x + 7 + oo + oo)`

= `e^(8x).(a^2 + b^2)^(2/2).cos(6x + 7 + 2oo)`
Similarly.
`(d^3y)/(dx^3) = e^(8x).(a^2 + b^2)^(3/2).cos(6x + 7 + 3oo)`
In general, the nth order derivative is given by
`(d^ny)/(dx^n) = e^(8x).(a^2 + b^2)^(n/2).cos(6x + 7 + noo)`,

Where ∞ = `tan^-1(b/a)`

∴ `(d^ny)/(dx^n) = e^(8x).(10)^n.cos[6x + 7 + ntan^-1(3/4)]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Differentiation - Exercise 1.5 [पृष्ठ ६०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 1 Differentiation
Exercise 1.5 | Q 4.12 | पृष्ठ ६०

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

If xpyq = (x + y)p+q then Prove that `dy/dx = y/x`


Find dy/dx if x sin y + y sin x = 0.


Find `dy/dx` in the following:

xy + y2 = tan x + y


Find `dx/dy` in the following.

x2 + xy + y2 = 100


Find `dy/dx` in the following:

`y = sin^(-1)((2x)/(1+x^2))`


if `(x^2 + y^2)^2 = xy` find `(dy)/(dx)`


Is |sin x| differentiable? What about cos |x|?


Let \[f\left( x \right)\begin{cases}a x^2 + 1, & x > 1 \\ x + 1/2, & x \leq 1\end{cases}\] . Then, f (x) is derivable at x = 1, if 


Find `"dy"/"dx"` ; if y = cos-1 `("2x" sqrt (1 - "x"^2))`


If x = tan-1t and y = t3 , find `(dy)/(dx)`.


Discuss extreme values of the function f(x) = x.logx


If ex + ey = ex+y, then show that `"dy"/"dx" = -e^(y - x)`.


Find `"dy"/"dx"` if x = at2, y = 2at.


Find `"dy"/"dx"`, if : x = sinθ, y = tanθ


Find `"dy"/"dx"`, if : `x = cos^-1((2t)/(1 + t^2)), y = sec^-1(sqrt(1 + t^2))`


Find `"dy"/"dx"`, if : `x = cos^-1(4t^3 - 3t), y = tan^-1(sqrt(1 - t^2)/t)`.


Find `"dy"/"dx"` if : x = cosec2θ, y = cot3θ at θ= `pi/(6)`


Find `"dy"/"dx"` if : x = a cos3θ, y = a sin3θ at θ = `pi/(3)`


Find `"dy"/"dx"` if : x = t2 + t + 1, y = `sin((pit)/2) + cos((pit)/2) "at"  t = 1`


Find `"dy"/"dx"` if : x = t + 2sin (πt), y = 3t – cos (πt) at t = `(1)/(2)`


Differentiate `sin^-1((2x)/(1 + x^2))w.r.t. cos^-1((1 - x^2)/(1 + x^2))`


Differentiate `cos^-1((1 - x^2)/(1 + x^2)) w.r.t. tan^-1 x.`


Differentiate `tan^-1((cosx)/(1 + sinx)) w.r.t. sec^-1 x.`


Find `(d^2y)/(dx^2)` of the following : x = sinθ, y = sin3θ at θ = `pi/(2)`


If y = x + tan x, show that `cos^2x.(d^2y)/(dx^2) - 2y + 2x` = 0.


Find the nth derivative of the following : eax+b 


Find the nth derivative of the following : apx+q 


Choose the correct option from the given alternatives : 

Let `f(1) = 3, f'(1) = -(1)/(3), g(1) = -4 and g'(1) =-(8)/(3).` The derivative of `sqrt([f(x)]^2 + [g(x)]^2` w.r.t. x at x = 1 is 


Choose the correct option from the given alternatives :

If y = sec (tan –1x), then `"dy"/"dx"` at x = 1, is equal to


Choose the correct option from the given alternatives :

If f(x) = `sin^-1((4^(x + 1/2))/(1 + 2^(4x)))`, which of the following is not the derivative of f(x)?


If y `tan^-1(sqrt((a - x)/(a +  x)))`, where – a < x < a, then `"dy"/"dx"` = .........


Suppose that the functions f and g and their derivatives with respect to x have the following values at x = 0 and x = 1: 

x f(x) g(x) f')x) g'(x)
0 1   5 `(1)/(3)`
1 3 – 4 `-(1)/(3)` `-(8)/(3)`

(i) The derivative of f[g(x)] w.r.t. x at x = 0 is ......
(ii) The derivative of g[f(x)] w.r.t. x at x = 0 is ......
(iii) The value of `["d"/"dx"[x^(10) + f(x)]^(-2)]_(x = 1_` is ........
(iv) The derivative of f[(x + g(x))] w.r.t. x at x = 0 is ...


Differentiate the following w.r.t. x : `sin^2[cot^-1(sqrt((1 + x)/(1 - x)))]`


Differentiate the following w.r.t. x : `tan^-1((sqrt(x)(3 - x))/(1 - 3x))`


Differentiate the following w.r.t. x:

`tan^-1(x/(1 + 6x^2)) + cot^-1((1 - 10x^2)/(7x))`


Differentiate the following w.r.t. x : `tan^-1[sqrt((sqrt(1 + x^2) + x)/(sqrt(1 + x^2) - x))]`


If `sqrt(y + x) + sqrt(y - x)` = c, show that `"dy"/"dx" = y/x - sqrt(y^2/x^2 - 1)`.


If `xsqrt(1 - y^2) + ysqrt(1 - x^2)` = 1, then show that `"dy"/"dx" = -sqrt((1 - y^2)/(1 - x^2)`.


If sin y = x sin (a + y), then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.


Differentiate `tan^-1((sqrt(1 + x^2) - 1)/x)` w.r.t. `cos^-1(sqrt((1 + sqrt(1 + x^2))/(2sqrt(1 + x^2))))`


If log y = log (sin x) – x2, show that `(d^2y)/(dx^2) + 4x "dy"/"dx" + (4x^2 + 3)y` = 0.


If x= a cos θ, y = b sin θ, show that `a^2[y(d^2y)/(dx^2) + (dy/dx)^2] + b^2` = 0.


If y = Aemx + Benx, show that y2 – (m + n)y1 + mny = 0.


Find `"dy"/"dx" if, sqrt"x" + sqrt"y" = sqrt"a"`


Find `"dy"/"dx"` if, x3 + y3 + 4x3y = 0 


Find `"dy"/"dx"` if, `"x"^"y" = "e"^("x - y")`


If log (x + y) = log (xy) + a then show that, `"dy"/"dx" = (- "y"^2)/"x"^2`.


Solve the following:

If `"e"^"x" + "e"^"y" = "e"^((x + y))` then show that, `"dy"/"dx" = - "e"^"y - x"`.


Choose the correct alternative.

If `"x"^4."y"^5 = ("x + y")^("m + 1")` then `"dy"/"dx" = "y"/"x"` then m = ?


State whether the following is True or False:

The derivative of `"x"^"m"*"y"^"n" = ("x + y")^("m + n")` is `"x"/"y"`


If `"x"^7*"y"^9 = ("x + y")^16`, then show that `"dy"/"dx" = "y"/"x"`


Find `"dy"/"dx"` if x = `"e"^"3t",  "y" = "e"^(sqrt"t")`.


If y = `sqrt(tansqrt(x)`, find `("d"y)/("d"x)`.


If x = sin θ, y = tan θ, then find `("d"y)/("d"x)`.


If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x)` is ______


State whether the following statement is True or False:

If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x) = 1/(2sqrt(x)) + 1/(2sqrt(y)) = 1/(2sqrt("a"))`


`(dy)/(dx)` of `xy + y^2 = tan x + y` is


y = `e^(x3)`


If y = `e^(m tan^-1x)` then show that `(1 + x^2) (d^2y)/(dx^2) + (2x - m) (dy)/(dx)` = 0


Find `dy/dx` if , x = `e^(3t), y = e^(sqrtt)`


If log (x + y) = log (xy) + a then show that, `dy/dx = (−y^2)/x^ 2`


Find `dy/dx if , x = e^(3t) , y = e^sqrtt`


Find `dy / dx` if, x = `e^(3t), y = e^sqrt t` 


Find `dy/dx"if", x= e^(3t), y=e^sqrtt`


Find `dy/(dx)  "if" , x = e^(3t), y = e^sqrtt`. 


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


If log(x + y) = log(xy) + a, then show that `dy/dx = (-y^2)/x^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×