Advertisements
Advertisements
प्रश्न
Find `dy/dx` in the following:
`y = sin^(-1)((2x)/(1+x^2))`
उत्तर
y = `sin^-1 ((2x)/(1 + x^2))`
Let, x = tan `theta => theta = tan^-1 x`
`therefore y = sin^-1 ((2 tan theta)/(1 + tan^2 theta))`
`= sin^-1 (sin 2 theta) ... [because sin 2 theta = (2 tan theta)/(1 + tan^2 theta)]`
`= 2 theta`
`y = 2 tan^-1 x`
`therefore dy/dx = 2 d/dx tan^-1 x`
`dy/dx = 2/(1 + x^2)`
APPEARS IN
संबंधित प्रश्न
If xpyq = (x + y)p+q then Prove that `dy/dx = y/x`
Find dy/dx if x sin y + y sin x = 0.
Find `dy/dx` in the following:
2x + 3y = sin x
Find `dy/dx` in the following:
ax + by2 = cos y
if `x^y + y^x = a^b`then Find `dy/dx`
If for the function
\[\Phi \left( x \right) = \lambda x^2 + 7x - 4, \Phi'\left( 5 \right) = 97, \text { find } \lambda .\]
Find the derivative of the function f defined by f (x) = mx + c at x = 0.
Examine the differentialibilty of the function f defined by
\[f\left( x \right) = \begin{cases}2x + 3 & \text { if }- 3 \leq x \leq - 2 \\ \begin{array}xx + 1 \\ x + 2\end{array} & \begin{array} i\text { if } - 2 \leq x < 0 \\\text { if } 0 \leq x \leq 1\end{array}\end{cases}\]
If f (x) = |x − 2| write whether f' (2) exists or not.
Write the derivative of f (x) = |x|3 at x = 0.
Find `dy/dx if x^3 + y^2 + xy = 7`
If y = `sqrt(cosx + sqrt(cosx + sqrt(cosx + ... ∞)`, then show that `"dy"/"dx" = sinx/(1 - 2y)`.
Find `"dy"/"dx"`, if : x = `sqrt(a^2 + m^2), y = log(a^2 + m^2)`
If x = `(t + 1)/(t - 1), y = (t - 1)/(t + 1), "then show that" y^2 + "dy"/"dx"` = 0.
Find `(d^2y)/(dx^2)` of the following : x = a(θ – sin θ), y = a(1 – cos θ)
If x = at2 and y = 2at, then show that `xy(d^2y)/(dx^2) + a` = 0.
If y = `e^(mtan^-1x)`, show that `(1 + x^2)(d^2y)/(dx^2) + (2x - m)"dy"/"dx"` = 0.
If `sec^-1((7x^3 - 5y^3)/(7^3 + 5y^3)) = "m", "show" (d^2y)/(dx^2)` = 0.
Find the nth derivative of the following:
`(1)/x`
Find the nth derivative of the following : cos (3 – 2x)
DIfferentiate `tan^-1((sqrt(1 + x^2) - 1)/x) w.r.t. tan^-1(sqrt((2xsqrt(1 - x^2))/(1 - 2x^2)))`.
Find `"dy"/"dx" if, sqrt"x" + sqrt"y" = sqrt"a"`
Find `"dy"/"dx"` if, x3 + y3 + 4x3y = 0
Find `"dy"/"dx"` if, `"x"^"y" = "e"^("x - y")`
Solve the following:
If `"x"^5 * "y"^7 = ("x + y")^12` then show that, `"dy"/"dx" = "y"/"x"`
Solve the following:
If `"e"^"x" + "e"^"y" = "e"^((x + y))` then show that, `"dy"/"dx" = - "e"^"y - x"`.
If `"x"^"a"*"y"^"b" = ("x + y")^("a + b")`, then show that `"dy"/"dx" = "y"/"x"`
Find `"dy"/"dx"` if x = `"e"^"3t", "y" = "e"^(sqrt"t")`.
If x2 + y2 = 1, then `(d^2x)/(dy^2)` = ______.
`(dy)/(dx)` of `2x + 3y = sin x` is:-
`(dy)/(dx)` of `xy + y^2 = tan x + y` is
Differentiate w.r.t x (over no. 24 and 25) `e^x/sin x`
Find `dy/dx` if, x = e3t, y = `e^sqrtt`
Find `dy/dx` if, `x = e^(3t), y = e^sqrtt`
If log(x + y) = log(xy) + a then show that, `dy/dx=(-y^2)/x^2`
Find `dy/dx"if", x= e^(3t), y=e^sqrtt`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
If log(x + y) = log(xy) + a, then show that `dy/dx = (-y^2)/x^2`