Advertisements
Advertisements
प्रश्न
Examine the differentialibilty of the function f defined by
\[f\left( x \right) = \begin{cases}2x + 3 & \text { if }- 3 \leq x \leq - 2 \\ \begin{array}xx + 1 \\ x + 2\end{array} & \begin{array} i\text { if } - 2 \leq x < 0 \\\text { if } 0 \leq x \leq 1\end{array}\end{cases}\]
उत्तर
\[f\left( x \right) = \begin{cases}2x + 3 & \text { if }- 3 \leq x \leq - 2 \\ \begin{array}xx + 1 \\ x + 2\end{array} & \begin{array} i\text { if } - 2 \leq x < 0 \\\text { if } 0 \leq x \leq 1\end{array}\end{cases}\]
\[f\left( x \right) = \begin{cases}2x + 3 & \text { if }- 3 \leq x \leq - 2 \\ \begin{array}11 \\ 1\end{array} & \begin{array} i\text { if } - 2 \leq x < 0 \\\text { if } 0 \leq x \leq 1\end{array}\end{cases}\]
Now,
\[\text { LHL }= \lim_{x \to - 2^-} f'\left( x \right) = \lim_{x \to - 2^-} 2 = 2\]
\[\text { RHL } = \lim_{x \to - 2^+} f'\left( x \right) = \lim_{x \to - 2^+} 1 = 1\]
\[\text { Since, at x } = - 2, \text { LHL} \neq \text{RHL}\]
\[\text { Hence,} f\left( x \right) \text { is not differentiable at x } = - 2\]
Again,
\[\text { LHL }= \lim_{x \to 0^-} f'\left( x \right) = \lim_{x \to 0^-} 1 = 1\]
\[\text { RHL } = \lim_{x \to 0^+} f'\left( x \right) = \lim_{x \to 0^+} 1 = 1\]
\[\text { Since, at x = 0, LHL = RHL }\]
\[\text { Hence }, f\left( x \right) \text { is differentiable at x } = 0\]
APPEARS IN
संबंधित प्रश्न
Find `dy/dx` in the following:
sin2 x + cos2 y = 1
if `(x^2 + y^2)^2 = xy` find `(dy)/(dx)`
Find the derivative of the function f defined by f (x) = mx + c at x = 0.
If f (x) = |x − 2| write whether f' (2) exists or not.
Let \[f\left( x \right)\begin{cases}a x^2 + 1, & x > 1 \\ x + 1/2, & x \leq 1\end{cases}\] . Then, f (x) is derivable at x = 1, if
Find `"dy"/"dx"` ; if x = sin3θ , y = cos3θ
Discuss extreme values of the function f(x) = x.logx
Find `"dy"/"dx"` if x = a cot θ, y = b cosec θ
Find `"dy"/"dx"`, if : x = a(1 – cosθ), y = b(θ – sinθ)
Find `"dy"/"dx"` if : x = a cos3θ, y = a sin3θ at θ = `pi/(3)`
Find `"dy"/"dx"` if : x = t + 2sin (πt), y = 3t – cos (πt) at t = `(1)/(2)`
Find `(d^2y)/(dx^2)` of the following : x = sinθ, y = sin3θ at θ = `pi/(2)`
If x = at2 and y = 2at, then show that `xy(d^2y)/(dx^2) + a` = 0.
If x = cos t, y = emt, show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" - m^2y` = 0.
If y = sin (m cos–1x), then show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" + m^2y` = 0.
Choose the correct option from the given alternatives :
If y = `tan^-1(x/(1 + sqrt(1 - x^2))) + sin[2tan^-1(sqrt((1 - x)/(1 + x)))] "then" "dy"/"dx"` = ...........
Choose the correct option from the given alternatives :
If x = a(cosθ + θ sinθ), y = a(sinθ – θ cosθ), then `((d^2y)/dx^2)_(θ = pi/4)` = .........
If x sin (a + y) + sin a . cos (a + y) = 0, then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.
Differentiate `tan^-1((sqrt(1 + x^2) - 1)/x)` w.r.t. `cos^-1(sqrt((1 + sqrt(1 + x^2))/(2sqrt(1 + x^2))))`
If x= a cos θ, y = b sin θ, show that `a^2[y(d^2y)/(dx^2) + (dy/dx)^2] + b^2` = 0.
Find `"dy"/"dx"` if, x3 + x2y + xy2 + y3 = 81
Find `"dy"/"dx"` if, xy = log (xy)
If log (x + y) = log (xy) + a then show that, `"dy"/"dx" = (- "y"^2)/"x"^2`.
Find `"dy"/"dx"` if x = `"e"^"3t", "y" = "e"^(sqrt"t")`.
If x = a t4 y = 2a t2 then `("d"y)/("d"x)` = ______
State whether the following statement is True or False:
If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x) = 1/(2sqrt(x)) + 1/(2sqrt(y)) = 1/(2sqrt("a"))`
y = `e^(x3)`
If y = `e^(m tan^-1x)` then show that `(1 + x^2) (d^2y)/(dx^2) + (2x - m) (dy)/(dx)` = 0
Find `(dy)/(dx)` if x + sin(x + y) = y – cos(x – y)
If y = y(x) is an implicit function of x such that loge(x + y) = 4xy, then `(d^2y)/(dx^2)` at x = 0 is equal to ______.
If `tan ((x + y)/(x - y))` = k, then `dy/dx` is equal to ______.
`"If" log(x+y) = log(xy)+a "then show that", dy/dx=(-y^2)/x^2`
Find `dy/dx` if, x = `e^(3t)`, y = `e^sqrtt`
If log (x + y) = log (xy) + a then show that, `dy/dx = (−y^2)/x^ 2`
Solve the following.
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Find `dy/(dx) "if" , x = e^(3t), y = e^sqrtt`.
If log(x + y) = log(xy) + a, then show that `dy/dx = (-y^2)/x^2`