English

Examine the Differentialibilty of the Function F Defined by F ( X ) = ⎧ ⎪ ⎨ ⎪ ⎩ 2 X + 3 I F − 3 ≤ X ≤ − 2 + 1 X + 2 F − 2 ≤ X < 0 I F 0 ≤ X ≤ 1 - Mathematics

Advertisements
Advertisements

Question

Examine the differentialibilty of the function f defined by

\[f\left( x \right) = \begin{cases}2x + 3 & \text { if }- 3 \leq x \leq - 2 \\ \begin{array}xx + 1 \\ x + 2\end{array} & \begin{array} i\text { if } - 2 \leq x < 0 \\\text {  if } 0 \leq x \leq 1\end{array}\end{cases}\] 

Answer in Brief

Solution

\[f\left( x \right) = \begin{cases}2x + 3 & \text { if }- 3 \leq x \leq - 2 \\ \begin{array}xx + 1 \\ x + 2\end{array} & \begin{array} i\text { if } - 2 \leq x < 0 \\\text {  if } 0 \leq x \leq 1\end{array}\end{cases}\] 

\[f\left( x \right) = \begin{cases}2x + 3 & \text { if }- 3 \leq x \leq - 2 \\ \begin{array}11 \\ 1\end{array} & \begin{array} i\text { if } - 2 \leq x < 0 \\\text {  if } 0 \leq x \leq 1\end{array}\end{cases}\] 

Now,
\[\text { LHL  }= \lim_{x \to - 2^-} f'\left( x \right) = \lim_{x \to - 2^-} 2 = 2\]
\[\text { RHL } = \lim_{x \to - 2^+} f'\left( x \right) = \lim_{x \to - 2^+} 1 = 1\]
\[\text { Since, at x } = - 2, \text { LHL} \neq \text{RHL}\]
\[\text { Hence,} f\left( x \right) \text { is not differentiable at x } = - 2\]
Again,
\[\text { LHL }= \lim_{x \to 0^-} f'\left( x \right) = \lim_{x \to 0^-} 1 = 1\]
\[\text { RHL } = \lim_{x \to 0^+} f'\left( x \right) = \lim_{x \to 0^+} 1 = 1\]
\[\text { Since, at x = 0, LHL = RHL }\]
\[\text { Hence }, f\left( x \right) \text { is differentiable at x } = 0\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Differentiability - Exercise 10.2 [Page 16]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 10 Differentiability
Exercise 10.2 | Q 7 | Page 16

RELATED QUESTIONS

Find `dy/dx` in the following:

2x + 3y = sin y


Find `dy/dx` in the following.

x3 + x2y + xy2 + y3 = 81


Find `dy/dx` in the following:

sin2 x + cos2 y = 1


if `x^y + y^x = a^b`then Find `dy/dx`


Is |sin x| differentiable? What about cos |x|?


If f (x) = |x − 2| write whether f' (2) exists or not.


If  \[\lim_{x \to c} \frac{f\left( x \right) - f\left( c \right)}{x - c}\]  exists finitely, write the value of  \[\lim_{x \to c} f\left( x \right)\]


Let \[f\left( x \right)\begin{cases}a x^2 + 1, & x > 1 \\ x + 1/2, & x \leq 1\end{cases}\] . Then, f (x) is derivable at x = 1, if 


If ex + ey = ex+y, then show that `"dy"/"dx" = -e^(y - x)`.


Find `"dy"/"dx"`, if : x = sinθ, y = tanθ


Find `"dy"/"dx"` if : x = cosec2θ, y = cot3θ at θ= `pi/(6)`


Find `"dy"/"dx"` if : x = t + 2sin (πt), y = 3t – cos (πt) at t = `(1)/(2)`


Find `(d^2y)/(dx^2)` of the following : x = a(θ – sin θ), y = a(1 – cos θ)


If x = at2 and y = 2at, then show that `xy(d^2y)/(dx^2) + a` = 0.


If y = x + tan x, show that `cos^2x.(d^2y)/(dx^2) - 2y + 2x` = 0.


If y = sin (m cos–1x), then show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" + m^2y` = 0.


If x2 + 6xy + y2 = 10, show that `(d^2y)/(dx^2) = (80)/(3x + y)^3`.


Find the nth derivative of the following : eax+b 


Find the nth derivative of the following : cos (3 – 2x)


Find the nth derivative of the following : `(1)/(3x - 5)`


Choose the correct option from the given alternatives :

If y = sec (tan –1x), then `"dy"/"dx"` at x = 1, is equal to


Choose the correct option from the given alternatives :

If `xsqrt(y + 1) + ysqrt(x + 1) = 0 and x ≠ y, "then" "dy"/"dx"` = ........


If y `tan^-1(sqrt((a - x)/(a +  x)))`, where – a < x < a, then `"dy"/"dx"` = .........


Suppose that the functions f and g and their derivatives with respect to x have the following values at x = 0 and x = 1: 

x f(x) g(x) f')x) g'(x)
0 1   5 `(1)/(3)`
1 3 – 4 `-(1)/(3)` `-(8)/(3)`

(i) The derivative of f[g(x)] w.r.t. x at x = 0 is ......
(ii) The derivative of g[f(x)] w.r.t. x at x = 0 is ......
(iii) The value of `["d"/"dx"[x^(10) + f(x)]^(-2)]_(x = 1_` is ........
(iv) The derivative of f[(x + g(x))] w.r.t. x at x = 0 is ...


Differentiate the following w.r.t. x : `tan^-1[sqrt((sqrt(1 + x^2) + x)/(sqrt(1 + x^2) - x))]`


DIfferentiate `tan^-1((sqrt(1 + x^2) - 1)/x) w.r.t. tan^-1(sqrt((2xsqrt(1 - x^2))/(1 - 2x^2)))`.


Choose the correct alternative.

If ax2 + 2hxy + by2 = 0 then `"dy"/"dx" = ?` 


If `"x"^7*"y"^9 = ("x + y")^16`, then show that `"dy"/"dx" = "y"/"x"`


If x2 + y2 = t + `1/"t"` and x4 + y4 = t2 + `1/"t"^2` then `("d"y)/("d"x)` = ______


If x = sin θ, y = tan θ, then find `("d"y)/("d"x)`.


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Find `dy/dx` if, x = `e^(3t)`, y = `e^sqrtt`


If log (x+y) = log (xy) + a then show that, `dy/dx= (-y^2)/(x^2)`


Find `dy / dx` if, x = `e^(3t), y = e^sqrt t` 


Solve the following.

If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


If log(x + y) = log(xy) + a then show that, `dy/dx = (−y^2)/x^2`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×