English

DIfferentiate tan-1(1+x2-1x)w.r.t.tan-1(2x1+x21-2x2). - Mathematics and Statistics

Advertisements
Advertisements

Question

DIfferentiate `tan^-1((sqrt(1 + x^2) - 1)/x) w.r.t. tan^-1(sqrt((2xsqrt(1 - x^2))/(1 - 2x^2)))`.

Sum

Solution

Let u = `tan^-1((sqrt(1 + x^2) - 1)/(x))`
and
v = `tan^-1((2xsqrt(1 - x^2))/(1 - 2x^2))`

Then we want to find `"du"/"dv"`

u = `tan^-1((sqrt(1 + x^2) - 1)/(x))`
Put x = tanθ
Thenθ = tan–1 x
and
`(sqrt(1 + x^2) - 1)/(x) = (sqrt(1 + tan^2θ) - 1)/tanθ`

= `(secθ - 1)/(tanθ)`

= `((1)/(cosθ) - 1)/((sinθ/cosθ)`

= `(1 - cosθ)/(sinθ)`

= `(2sin^2(θ/2))/(2sin(θ/2)cos(θ/2))`

= `tan(θ/2)`

∴ u = `tan^-1[tan(θ/2)] = θ/(2) = (1)/(2)tan^-1x`

∴ `"du"/"dx" = (1)/(2)"d"/"dx"(tan^-1x)`

= `(1)/(2) xx (1)/(1 + x^2)`

= `(1)/(2(1 + x^2)`

v = `tan^-1((2xsqrt(1 - x^2))/(1 - 2x^2))`
Put x = sinθ.
Thenθ = sin–1x
and
`(2xsqrt(1 - x^2))/(1 - 2x^2)`

= `(2sinθsqrt(1 - sin^2θ))/(1 - 2sin^2θ)`

= `(2sinθcosθ)/(1 - 2sin^2θ)`

= `(sin2θ)/(cos2θ)`
= tan2θ
∴ v = tan-1(tan2θ)
= 2θ
= 2sin-1x
∴ `"dv"/"dx" = 2"d"/"dx"(sin^-1x)`

= `2 xx (1)/sqrt(1 - x^2) = (2)/sqrt(1 - x^2)`

∴ `"du"/"dx" = (("du"/"dx"))/(("dv"/"dx")`

= `([(1)/(2(1 + x^2))])/(((2)/sqrt(1 - x^2))`

= `(1)/(2(1 + x^2)) xx sqrt(1 - x^2)/(2)`

= `sqrt(1 - x^2)/(4(1 + x^2)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Differentiation - Miscellaneous Exercise 1 (II) [Page 64]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 1 Differentiation
Miscellaneous Exercise 1 (II) | Q 6.1 | Page 64

RELATED QUESTIONS

Find `dy/dx` in the following.

x3 + x2y + xy2 + y3 = 81


Find `dy/dx` in the following:

sin2 y + cos xy = k


Find `dy/dx` in the following:

`y = sin^(-1)((2x)/(1+x^2))`


Show that the derivative of the function f given by 

\[f\left( x \right) = 2 x^3 - 9 x^2 + 12x + 9\], at x = 1 and x = 2 are equal.

If  \[f\left( x \right) = x^3 + 7 x^2 + 8x - 9\] 

, find f'(4).


Find the derivative of the function f defined by f (x) = mx + c at x = 0.


Examine the differentialibilty of the function f defined by

\[f\left( x \right) = \begin{cases}2x + 3 & \text { if }- 3 \leq x \leq - 2 \\ \begin{array}xx + 1 \\ x + 2\end{array} & \begin{array} i\text { if } - 2 \leq x < 0 \\\text {  if } 0 \leq x \leq 1\end{array}\end{cases}\] 


Is |sin x| differentiable? What about cos |x|?


Let \[f\left( x \right)\begin{cases}a x^2 + 1, & x > 1 \\ x + 1/2, & x \leq 1\end{cases}\] . Then, f (x) is derivable at x = 1, if 


Find `dy/dx if x^3 + y^2 + xy = 7`


Find `"dy"/"dx"` ; if x = sin3θ , y = cos3θ


Find `(dy)/(dx) if y = cos^-1 (√x)`


Differentiate tan-1 (cot 2x) w.r.t.x.


If x = tan-1t and y = t3 , find `(dy)/(dx)`.


Discuss extreme values of the function f(x) = x.logx


If y = `sqrt(cosx + sqrt(cosx + sqrt(cosx + ... ∞)`, then show that `"dy"/"dx" = sinx/(1 - 2y)`.


Find `"dy"/"dx"`, if : x = `(t + 1/t)^a, y = a^(t+1/t)`, where a > 0, a ≠ 1, t ≠ 0.


Find `"dy"/"dx"`, if : `x = cos^-1(4t^3 - 3t), y = tan^-1(sqrt(1 - t^2)/t)`.


Find `"dy"/"dx"` if : x = t + 2sin (πt), y = 3t – cos (πt) at t = `(1)/(2)`


DIfferentiate x sin x w.r.t. tan x.


Differentiate `tan^-1((x)/(sqrt(1 - x^2))) w.r.t. sec^-1((1)/(2x^2 - 1))`.


Differentiate `cos^-1((1 - x^2)/(1 + x^2)) w.r.t. tan^-1 x.`


Find `(d^2y)/(dx^2)` of the following : x = a cos θ, y = b sin θ at θ = `π/4`.


If x2 + 6xy + y2 = 10, show that `(d^2y)/(dx^2) = (80)/(3x + y)^3`.


Find the nth derivative of the following : (ax + b)m 


Find the nth derivative of the following : eax+b 


Find the nth derivative of the following : sin (ax + b)


Find the nth derivative of the following : `(1)/(3x - 5)`


Find the nth derivative of the following:

y = e8x . cos (6x + 7)


Choose the correct option from the given alternatives : 

Let `f(1) = 3, f'(1) = -(1)/(3), g(1) = -4 and g'(1) =-(8)/(3).` The derivative of `sqrt([f(x)]^2 + [g(x)]^2` w.r.t. x at x = 1 is 


Choose the correct option from the given alternatives :

If y = sec (tan –1x), then `"dy"/"dx"` at x = 1, is equal to


Choose the correct option from the given alternatives :

If y = sin (2sin–1 x), then dx = ........


Choose the correct option from the given alternatives :

If `xsqrt(y + 1) + ysqrt(x + 1) = 0 and x ≠ y, "then" "dy"/"dx"` = ........


If y `tan^-1(sqrt((a - x)/(a +  x)))`, where – a < x < a, then `"dy"/"dx"` = .........


Choose the correct option from the given alternatives :

If x = a(cosθ + θ sinθ), y = a(sinθ – θ cosθ), then `((d^2y)/dx^2)_(θ = pi/4)` = .........


Suppose that the functions f and g and their derivatives with respect to x have the following values at x = 0 and x = 1: 

x f(x) g(x) f')x) g'(x)
0 1   5 `(1)/(3)`
1 3 – 4 `-(1)/(3)` `-(8)/(3)`

(i) The derivative of f[g(x)] w.r.t. x at x = 0 is ......
(ii) The derivative of g[f(x)] w.r.t. x at x = 0 is ......
(iii) The value of `["d"/"dx"[x^(10) + f(x)]^(-2)]_(x = 1_` is ........
(iv) The derivative of f[(x + g(x))] w.r.t. x at x = 0 is ...


Differentiate the following w.r.t. x : `sin[2tan^-1(sqrt((1 - x)/(1 + x)))]`


If `sqrt(y + x) + sqrt(y - x)` = c, show that `"dy"/"dx" = y/x - sqrt(y^2/x^2 - 1)`.


If `xsqrt(1 - y^2) + ysqrt(1 - x^2)` = 1, then show that `"dy"/"dx" = -sqrt((1 - y^2)/(1 - x^2)`.


If x sin (a + y) + sin a . cos (a + y) = 0, then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.


If sin y = x sin (a + y), then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.


If `x = e^(x/y)`, then show that `"dy"/"dx" = (x - y)/(xlogx)`


Differentiate log `[(sqrt(1 + x^2) + x)/(sqrt(1 + x^2 - x)]]` w.r.t. cos (log x).


Differentiate `tan^-1((sqrt(1 + x^2) - 1)/x)` w.r.t. `cos^-1(sqrt((1 + sqrt(1 + x^2))/(2sqrt(1 + x^2))))`


Find `"dy"/"dx" if, sqrt"x" + sqrt"y" = sqrt"a"`


Find `"dy"/"dx"` if, xy = log (xy)


If log (x + y) = log (xy) + a then show that, `"dy"/"dx" = (- "y"^2)/"x"^2`.


Choose the correct alternative.

If ax2 + 2hxy + by2 = 0 then `"dy"/"dx" = ?` 


Choose the correct alternative.

If x = `("e"^"t" + "e"^-"t")/2, "y" = ("e"^"t" - "e"^-"t")/2`  then `"dy"/"dx"` = ? 


If y = `("x" + sqrt("x"^2 - 1))^"m"`, then `("x"^2 - 1) "dy"/"dx"` = ______.


If `"x"^"a"*"y"^"b" = ("x + y")^("a + b")`, then show that `"dy"/"dx" = "y"/"x"`


If x2 + y2 = t + `1/"t"` and x4 + y4 = t2 + `1/"t"^2` then `("d"y)/("d"x)` = ______


If y = `sqrt(tansqrt(x)`, find `("d"y)/("d"x)`.


If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x)` is ______


`(dy)/(dx)` of `2x + 3y = sin x` is:-


`(dy)/(dx)` of `xy + y^2 = tan x + y` is


Find `(d^2y)/(dy^2)`, if y = e4x


If 2x + 2y = 2x+y, then `(dy)/(dx)` is equal to ______.


Let y = y(x) be a function of x satisfying `ysqrt(1 - x^2) = k - xsqrt(1 - y^2)` where k is a constant and `y(1/2) = -1/4`. Then `(dy)/(dx)` at x = `1/2`, is equal to ______.


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Find `dy/dx` if , x = `e^(3t), y = e^(sqrtt)`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


If log(x + y) = log(xy) + a then show that, `dy/dx = (−y^2)/x^2`


Find `dy/dx"if", x= e^(3t), y=e^sqrtt`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×