English

If y = f(x) is a differentiable function of x, then show that d2xdy2=-(dydx)-3.d2ydx2. - Mathematics and Statistics

Advertisements
Advertisements

Question

If y = f(x) is a differentiable function of x, then show that `(d^2x)/(dy^2) = -(dy/dx)^-3.("d^2y)/(dx^2)`.

Sum

Solution

If y = f(x) is a differentiable function of x such that inverse function x = f–1(y) exists, then `"dx"/"dy" = (1)/((dy/dx)), "where" "dy"/"dx" ≠ 0`

∴ `(d^2x)/(dy^2) = "d"/"dy"(dx/dy)`

= `"d"/"dy"[(1)/((dy/dx))]`

= `"d"/"Dx"(dy/dx)^-1 xx "dx"/dy"`

= `-1(dy/dx)^-2."d"/"dx"(dy/dx) xx (1)/((dy/dx)`

= `-(dy/dx)^-2.(d^2y)/(dx^2).(dy/dx)^-1`

∴ `(d^2x)/(dy^2) = -(dy/dx)^-3.(d^2y)/(dx^2)`.

shaalaa.com
Derivatives of Inverse Functions
  Is there an error in this question or solution?
Chapter 1: Differentiation - Miscellaneous Exercise 1 (II) [Page 64]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 1 Differentiation
Miscellaneous Exercise 1 (II) | Q 5.6 | Page 64

RELATED QUESTIONS

Find the derivative of the function y = f(x) using the derivative of the inverse function x = f-1(y) in the following: y = `sqrt(2 - sqrt(x)`


Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following:

y = log(2x – 1)


Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following: y = e2x-3 


Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following: y = `log_2(x/2)`


Find the derivative of the inverse function of the following : y = x2·ex 


Find the derivative of the inverse function of the following : y = x cos x


Find the derivative of the inverse function of the following : y = x2 + log x


Find the derivative of the inverse function of the following : y = x log x


Find the derivative of the inverse of the following functions, and also find their value at the points indicated against them. y = ex + 3x + 2


If f(x) = x3 + x – 2, find (f–1)'(0).


Using derivative, prove that: tan –1x + cot–1x = `pi/(2)`


Using derivative, prove that: sec–1x + cosec–1x = `pi/(2)`    ...[for |x| ≥ 1]


Choose the correct option from the given alternatives :

If g is the inverse of function f and f'(x) = `(1)/(1 + x)`, then the value of g'(x) is equal to :


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 18x + log(x - 4).


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 25x + log(1 + x2)


Find the marginal demand of a commodity where demand is x and price is y.

y = `"x"*"e"^-"x" + 7`


Find the marginal demand of a commodity where demand is x and price is y.

y = `("x + 2")/("x"^2 + 1)`


Find the marginal demand of a commodity where demand is x and price is y.

y = `(5"x" + 9)/(2"x" - 10)`


If `"x"^3 + "y"^2 + "xy" = 7` Find `"dy"/"dx"`


If `"x"^3"y"^3 = "x"^2 - "y"^2`, Find `"dy"/"dx"`


Find the derivative of the inverse of function y = 2x3 – 6x and calculate its value at x = −2


Choose the correct alternative:

If x = at2, y = 2at, then `("d"^2y)/("d"x^2)` = ?


State whether the following statement is True or False:

If y = 10x + 1, then `("d"y)/("d"x)` = 10x.log10


State whether the following statement is True or False:

If y = 7x + 1, then the rate of change of demand (x) of a commodity with respect to its price (y) is 7


If `int (dx)/(4x^2 - 1)` = A log `((2x - 1)/(2x + 1))` + c, then A = ______.


I.F. of dx = y (x + y ) dy is a function of ______.


The I.F. of differential equation `dy/dx+y/x=x^2-3  "is" log x.`


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2.


Find `dy/dx`, if y = `sec^-1((1 + x^2)/(1 - x^2))`.


If y = `sin^-1((2tanx)/(1 + tan^2x))`, find `dy/dx`.


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2


Find the rate of change of demand (x) of a commodity with respect to its price (y) if

y = 12 + 10x + 25x2


Find the rate of change of demand (x) of a commodity with respect to its price (y) if 

y = `12 + 10x + 25x^2`


Find the rate of change of demand (x) of a commodity with respect to its price (y) if `y=12+10x+25x^2`


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×