Advertisements
Advertisements
Question
If `"x"^3"y"^3 = "x"^2 - "y"^2`, Find `"dy"/"dx"`
Solution
`"x"^3"y"^3 = "x"^2 - "y"^2`
Differentiating both sides w.r.t. x, we get
`"x"^3 "d"/"dx" "y"^3 + "y"^3 "d"/"dx" "x"^3 = "2x" - "2y" "dy"/"dx"`
∴ `"x"^3 (3"y"^2) "dy"/"dx" + "y"^3 (3"x"^2) = "2x" - "2y" "dy"/"dx"`
∴ `3"x"^3"y"^2 "dy"/"dx" + "2y" "dy"/"dx" = "2x" - 3"x"^2"y"^2`
∴ `"y"(3"x"^3"y" + 2)"dy"/"dx" = "x"(2 - 3"xy"^3)`
∴ `"dy"/"dx" = ("x"(2 - 3"xy"^3))/("y"(3"x"^3"y" + 2))`
∴ `"dy"/"dx" = "x"/"y"((2 - 3"xy"^3)/(2 + 3"x"^3"y"))`
APPEARS IN
RELATED QUESTIONS
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f-1(y) in the following: y = `sqrt(2 - sqrt(x)`
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following:
y = log(2x – 1)
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following: y = ex – 3
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following: y = e2x-3
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following: y = `log_2(x/2)`
Find the derivative of the inverse of the following functions, and also find their value at the points indicated against them. y = sin(x – 2) + x2
If f(x) = x3 + x – 2, find (f–1)'(0).
Using derivative, prove that: tan –1x + cot–1x = `pi/(2)`
Using derivative, prove that: sec–1x + cosec–1x = `pi/(2)` ...[for |x| ≥ 1]
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2
Find the marginal demand of a commodity where demand is x and price is y.
y = `("x + 2")/("x"^2 + 1)`
Find the marginal demand of a commodity where demand is x and price is y.
y = `(5"x" + 9)/(2"x" - 10)`
Choose the correct alternative:
What is the rate of change of demand (x) of a commodity with respect to its price (y) if y = 10 + x + 25x3.
Choose the correct alternative:
If x = at2, y = 2at, then `("d"^2y)/("d"x^2)` = ?
Find rate of change of demand (x) of a commodity with respect to its price (y) if y = `(3x + 7)/(2x^2 + 5)`
Find `dy/dx`, if y = `sec^-1((1 + x^2)/(1 - x^2))`.
If y = `cos^-1 sqrt((1 + x^2)/2`, then `dy/dx` = ______.
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2.
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2.