Advertisements
Advertisements
Question
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2
Solution
y = 12 + 10x + 25x2
Differentiating both sides w.r.t.x, we get
`"dy"/"dx" = "d"/"dx"`(12 + 10x + 25x2)
= 0 + 10 + 25(2x)
= 10 + 50x
Now by derivative of inverse function, the rate of change of demand (x) w.r.t. price (y) is
`"dx"/"dy" = 1/("dy"/"dx")`, where `"dy"/"dx" ne 0`
i.e. `"dx"/"dy" = 1/(10 + 50"x")`
APPEARS IN
RELATED QUESTIONS
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following: y = ex – 3
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following: y = e2x-3
Find the derivative of the inverse function of the following : y = x cos x
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 25x + log(1 + x2)
Find the marginal demand of a commodity where demand is x and price is y.
y = `(5"x" + 9)/(2"x" - 10)`
If `"x"^3 + "y"^2 + "xy" = 7` Find `"dy"/"dx"`
If g is the inverse of f and f'(x) = `1/(1 + x^4)` then g'(x) = ______
Find the derivative of the inverse of function y = 2x3 – 6x and calculate its value at x = −2
Find the derivative of cos−1x w.r. to `sqrt(1 - x^2)`
Choose the correct alternative:
What is the rate of change of demand (x) of a commodity with respect to its price (y) if y = 10 + x + 25x3.
Choose the correct alternative:
What is the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(3x + 7)/(2x^2 + 5)`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 5 + x2e–x + 2x
I.F. of dx = y (x + y ) dy is a function of ______.
Find `dy/dx`, if y = `sec^-1((1 + x^2)/(1 - x^2))`.
If y = `cos^-1 sqrt((1 + x^2)/2`, then `dy/dx` = ______.
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2.