Advertisements
Advertisements
Question
Find the derivative of the inverse of function y = 2x3 – 6x and calculate its value at x = −2
Solution
y = 2x3 – 6x
Differentiating w.r.t. x, we get
`("d"y)/("d"x) = "d"/("d"x)(2x^3 - 6x)`
= 2(3x2) – 6
= 6x2 – 6
= 6(x2 – 1)
∴ `(("d"y)/("d"x))_(x = -2) = 6[(-2)^2 - 1]`
= 6(3)
= 18
∴ `(("d"x)/("d"y))_(x = -2) = 1/(("d"y)/("d"x))_(x = -2)`
= `1/18`
APPEARS IN
RELATED QUESTIONS
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f-1(y) in the following: y = `sqrt(2 - sqrt(x)`
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following:
y = log(2x – 1)
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following: y = ex – 3
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following: y = `log_2(x/2)`
Find the derivative of the inverse function of the following : y = x2·ex
Find the derivative of the inverse function of the following : y = x cos x
Find the derivative of the inverse function of the following : y = x ·7x
Find the derivative of the inverse function of the following : y = x log x
Find the derivative of the inverse of the following functions, and also find their value at the points indicated against them. y = x5 + 2x3 + 3x, at x = 1
Find the derivative of the inverse of the following functions, and also find their value at the points indicated against them. y = sin(x – 2) + x2
If f(x) = x3 + x – 2, find (f–1)'(0).
Using derivative, prove that: tan –1x + cot–1x = `pi/(2)`
Using derivative, prove that: sec–1x + cosec–1x = `pi/(2)` ...[for |x| ≥ 1]
If y = f(x) is a differentiable function of x, then show that `(d^2x)/(dy^2) = -(dy/dx)^-3.("d^2y)/(dx^2)`.
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 18x + log(x - 4).
Find the marginal demand of a commodity where demand is x and price is y.
y = `"x"*"e"^-"x" + 7`
Find the marginal demand of a commodity where demand is x and price is y.
y = `("x + 2")/("x"^2 + 1)`
If y = `"x"^3 + 3"xy"^2 + 3"x"^2"y"` Find `"dy"/"dx"`
If `"x"^3"y"^3 = "x"^2 - "y"^2`, Find `"dy"/"dx"`
If y = `tan^-1((2x)/(1 - x^2))`, x ∈ (−1, 1) then `("d"y)/("d"x)` = ______.
If g is the inverse of f and f'(x) = `1/(1 + x^4)` then g'(x) = ______
Let f(x) = x5 + 2x – 3 find (f−1)'(-3)
Find the derivative of cos−1x w.r. to `sqrt(1 - x^2)`
Choose the correct alternative:
What is the rate of change of demand (x) of a commodity with respect to its price (y) if y = 10 + x + 25x3.
Choose the correct alternative:
What is the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(3x + 7)/(2x^2 + 5)`
The rate of change of demand (x) of a commodity with respect to its price (y) is ______ if y = 5 + x2e–x + 2x
State whether the following statement is True or False:
If y = x2, then the rate of change of demand (x) of a commodity with respect to its price (y) is `1/(2x)`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 5 + x2e–x + 2x
Find rate of change of demand (x) of a commodity with respect to its price (y) if y = `(3x + 7)/(2x^2 + 5)`
If `int (dx)/(4x^2 - 1)` = A log `((2x - 1)/(2x + 1))` + c, then A = ______.
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2
I.F. of dx = y (x + y ) dy is a function of ______.
The I.F. of differential equation `dy/dx+y/x=x^2-3 "is" log x.`
If y = `cos^-1 sqrt((1 + x^2)/2`, then `dy/dx` = ______.
If y = `sin^-1((2tanx)/(1 + tan^2x))`, find `dy/dx`.
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2.
Find the rate of change of demand (x) of a commodity with respect to its price (y) if
y = `12 + 10x + 25x^2`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2.