हिंदी

Find the derivative of the inverse of function y = 2x3 – 6x and calculate its value at x = −2 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the derivative of the inverse of function y = 2x3 – 6x and calculate its value at x = −2

योग

उत्तर

y = 2x3 – 6x

Differentiating w.r.t. x, we get

`("d"y)/("d"x) = "d"/("d"x)(2x^3 - 6x)`

= 2(3x2) – 6

= 6x2 – 6

= 6(x2 – 1)

∴ `(("d"y)/("d"x))_(x = -2) = 6[(-2)^2 - 1]`

= 6(3)

= 18

∴ `(("d"x)/("d"y))_(x = -2) = 1/(("d"y)/("d"x))_(x = -2)`

= `1/18`

shaalaa.com
Derivatives of Inverse Functions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.1: Differentiation - Short Answers I

संबंधित प्रश्न

Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following:

y = `sqrt(x)`


Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following:

y = log(2x – 1)


Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following: y = ex – 3


Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following: y = e2x-3 


Find the derivative of the inverse function of the following : y = x2·ex 


Find the derivative of the inverse function of the following : y = x cos x


Find the derivative of the inverse function of the following : y = x2 + log x


Find the derivative of the inverse function of the following : y = x log x


Find the derivative of the inverse of the following functions, and also find their value at the points indicated against them. y = x5 + 2x3 + 3x, at x = 1


Find the derivative of the inverse of the following functions, and also find their value at the points indicated against them. y = ex + 3x + 2


Using derivative, prove that: tan –1x + cot–1x = `pi/(2)`


Using derivative, prove that: sec–1x + cosec–1x = `pi/(2)`    ...[for |x| ≥ 1]


Choose the correct option from the given alternatives :

If g is the inverse of function f and f'(x) = `(1)/(1 + x)`, then the value of g'(x) is equal to :


If y = f(x) is a differentiable function of x, then show that `(d^2x)/(dy^2) = -(dy/dx)^-3.("d^2y)/(dx^2)`.


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2 


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 18x + log(x - 4).


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 25x + log(1 + x2)


Find the marginal demand of a commodity where demand is x and price is y.

y = `"x"*"e"^-"x" + 7`


Find the marginal demand of a commodity where demand is x and price is y.

y = `("x + 2")/("x"^2 + 1)`


Find the marginal demand of a commodity where demand is x and price is y.

y = `(5"x" + 9)/(2"x" - 10)`


State whether the following is True or False:

If f′ is the derivative of f, then the derivative of the inverse of f is the inverse of f′.


If `"x"^3 + "y"^2 + "xy" = 7` Find `"dy"/"dx"`


If `"x"^3"y"^3 = "x"^2 - "y"^2`, Find `"dy"/"dx"`


If y = `tan^-1((2x)/(1 - x^2))`, x ∈ (−1, 1) then `("d"y)/("d"x)` = ______.


Differentiate `tan^-1[(sqrt(1 + x^2) - 1)/x]` w.r. to `tan^-1[(2x sqrt(1 - x^2))/(1 - 2x^2)]`


Choose the correct alternative:

What is the rate of change of demand (x) of a commodity with respect to its price (y) if y = 10 + x + 25x3.


Choose the correct alternative:

If xm. yn = `("x" + "y")^(("m" + "n"))`, then `("dy")/("dx")` = ?


The rate of change of demand (x) of a commodity with respect to its price (y) is ______ if y = 5 + x2e–x + 2x


State whether the following statement is True or False:

If y = 10x + 1, then `("d"y)/("d"x)` = 10x.log10


State whether the following statement is True or False:

If y = x2, then the rate of change of demand (x) of a commodity with respect to its price (y) is `1/(2x)`


If `int (dx)/(4x^2 - 1)` = A log `((2x - 1)/(2x + 1))` + c, then A = ______.


I.F. of dx = y (x + y ) dy is a function of ______.


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2.


Find `dy/dx`, if y = `sec^-1((1 + x^2)/(1 - x^2))`.


If y = `sin^-1((2tanx)/(1 + tan^2x))`, find `dy/dx`.


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2.


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2.


Find the rate of change of demand (x) of a commodity with respect to its price (y) if

y = 12 + 10x + 25x2


Find the rate of change of demand (x) of a commodity with respect to its price (y) if 

y = `12 + 10x + 25x^2`


Find the rate of change of demand (x) of a commodity with respect to its price (y) if `y=12+10x+25x^2`


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×