हिंदी

Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following: y = log(2x – 1) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following:

y = log(2x – 1)

योग

उत्तर

y = log(2x – 1)                                     ...(1)
We have to find the inverse function of y = f(x), i.e x in terms of y.
From (1),
2x – 1 = ey
∴ 2x = ey + 1
∴ x = f–1(y)
= `(1)/(2)(e^y + 1)`

∴ `"dx"/"dy" = (1)/(2)"d"/"dy"(e^y + 1)`

= `(1)/(2)(e^y + 0)`

= `(1)/(2)e^y`

= `(1)/(2)e^(log(2x - 1)`                      ...[By (1)]

= `(1)/(2)(2x - 1)`                       ...[∵ elogx = x]

∴ `"dy"/"dx" = (1)/(("dx"/"dy")`

= `(2)/(2x - 1)`

shaalaa.com
Derivatives of Inverse Functions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Differentiation - Exercise 1.2 [पृष्ठ २९]

APPEARS IN

संबंधित प्रश्न

Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following:

y = `sqrt(x)`


Find the derivative of the function y = f(x) using the derivative of the inverse function x = f-1(y) in the following: y = `sqrt(2 - sqrt(x)`


Find the derivative of the function y = f(x) using the derivative of the inverse function x = f-1(y) in the following: y = `root(3)(x - 2)`


Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following: y = e2x-3 


Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following: y = `log_2(x/2)`


Find the derivative of the inverse function of the following : y = x cos x


Find the derivative of the inverse function of the following : y = x2 + log x


Find the derivative of the inverse of the following functions, and also find their value at the points indicated against them. y = x5 + 2x3 + 3x, at x = 1


If f(x) = x3 + x – 2, find (f–1)'(0).


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 25x + log(1 + x2)


Find the marginal demand of a commodity where demand is x and price is y.

y = `"x"*"e"^-"x" + 7`


Find the marginal demand of a commodity where demand is x and price is y.

y = `(5"x" + 9)/(2"x" - 10)`


If y = `"x"^3 + 3"xy"^2 + 3"x"^2"y"` Find `"dy"/"dx"`


If y = `tan^-1((2x)/(1 - x^2))`, x ∈ (−1, 1) then `("d"y)/("d"x)` = ______.


If g is the inverse of f and f'(x) = `1/(1 + x^4)` then g'(x) = ______


Find the derivative of the inverse of function y = 2x3 – 6x and calculate its value at x = −2


Differentiate `tan^-1[(sqrt(1 + x^2) - 1)/x]` w.r. to `tan^-1[(2x sqrt(1 - x^2))/(1 - 2x^2)]`


Choose the correct alternative:

What is the rate of change of demand (x) of a commodity with respect to its price (y) if y = 10 + x + 25x3.


State whether the following statement is True or False:

If y = 10x + 1, then `("d"y)/("d"x)` = 10x.log10


State whether the following statement is True or False:

If y = x2, then the rate of change of demand (x) of a commodity with respect to its price (y) is `1/(2x)`


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 5 + x2e–x + 2x


Find rate of change of demand (x) of a commodity with respect to its price (y) if y = `(3x + 7)/(2x^2 + 5)`


The rate of change of demand (x) of a commodity with respect to its price (y), if y = 20 + 15x + x3.

Solution: Let y = 20 + 15x + x3

Diff. w.r.to x, we get

`("d"y)/("d"x) = square + square  + square`

∴ `("d"y)/("d"x)` = 15 + 3x2

∴ By derivative of the inverse function,

`("d"x)/("d"y)  1/square, ("d"y)/("d"x) ≠ 0`

∴ Rate of change of demand with respect to price = `1/(square + square)`


If `int (dx)/(4x^2 - 1)` = A log `((2x - 1)/(2x + 1))` + c, then A = ______.


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2.


Find `dy/dx`, if y = `sec^-1((1 + x^2)/(1 - x^2))`.


If y = `cos^-1 sqrt((1 + x^2)/2`, then `dy/dx` = ______.


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2.


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2.


Find the rate of change of demand (x) of a commodity with respect to its price (y) if  y = 12 + 10x + 25x


Find the rate of change of demand (x) of a commodity with respect to its price (y) if `y=12+10x+25x^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×