Advertisements
Advertisements
प्रश्न
Find rate of change of demand (x) of a commodity with respect to its price (y) if y = `(3x + 7)/(2x^2 + 5)`
उत्तर
y = `(3x + 7)/(2x^2 + 5)`
Differentiating both sides w.r.t. x, we get
`("d"y)/("d"x) = "d"/("d"x)((3x + 7)/(2x^2 + 5))`
= `((2x^2 + 5)*"d"/("d"x)(3x + 7) - (3x + 7)*"d"/("d"x)(2x^2 + 5))/(2x^2 + 5)^2`
= `((2x^2 + 5)(3 + 0) - (3x + 7)(4x + 0))/(2x^2 + 5)^2`
= `(6x^2 + 15 - 12x^2 - 28x)/(2x^2 + 5)^2`
= `(-6x^2 - 28x + 15)/(2x^2 + 5)^2`
Now, by derivative of inverse function, the rate of change of demand (x) w.r.t. price (y) is
`("d"x)/("d"y) = 1/(("d"y)/("d"x))`, where `("d"y)/("d"x) ≠ 0`
i.e, `("d"x)/("d"y) = 1/((-6x^2 - 28x + 15)/(2x^2 + 5)^2`
= `(2x^2 + 5)^2/(- 6x^2 - 28x + 15)`
APPEARS IN
संबंधित प्रश्न
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f-1(y) in the following: y = `sqrt(2 - sqrt(x)`
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f-1(y) in the following: y = `root(3)(x - 2)`
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following: y = `log_2(x/2)`
Find the derivative of the inverse function of the following : y = x2 + log x
Find the derivative of the inverse function of the following : y = x log x
Using derivative, prove that: tan –1x + cot–1x = `pi/(2)`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2
Find the marginal demand of a commodity where demand is x and price is y.
y = `(5"x" + 9)/(2"x" - 10)`
If g is the inverse of f and f'(x) = `1/(1 + x^4)` then g'(x) = ______
Find the derivative of cos−1x w.r. to `sqrt(1 - x^2)`
Choose the correct alternative:
What is the rate of change of demand (x) of a commodity with respect to its price (y) if y = 10 + x + 25x3.
Choose the correct alternative:
What is the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(3x + 7)/(2x^2 + 5)`
Choose the correct alternative:
If x = at2, y = 2at, then `("d"^2y)/("d"x^2)` = ?
The rate of change of demand (x) of a commodity with respect to its price (y) is ______ if y = xe–x + 7
If `int (dx)/(4x^2 - 1)` = A log `((2x - 1)/(2x + 1))` + c, then A = ______.
I.F. of dx = y (x + y ) dy is a function of ______.
Find the rate of change of demand (x) of a commodity with respect to its price (y) if
y = `12 + 10x + 25x^2`