Advertisements
Advertisements
प्रश्न
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following: y = `log_2(x/2)`
उत्तर
y = `log_2(x/2)` ...(1)
We have to find the inverse function of y = f(x), i.e x in terms of y.
From (1),
`x/(2)` = 2y
∴ x = 2.2y = 2y+1
∴ x = f–1(y) = 2y+1
∴ `"dx"/"dy" = "d"/dy"(2^(y + 1))`
= `2^(y + 1).log2."d"/"dy"(y + 1)`
= `2^(y + 1).log2.(1 + 0)`
= `2^(y + 1).log2`
= `2^(log_2(x/2) + 1).log2` ...[By (1)]
= `2^(log_2(x/2) + log_2 2).log2`
= `2^(log_2(x/2 xx 2).log2`
= 2log2x.log2
= x log 2 ...[∵ alogax = x]
∴ `"dy"/"dx" = (1)/(("dx"/"dy")`
= `(1)/(xlog2)`.
APPEARS IN
संबंधित प्रश्न
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f-1(y) in the following: y = `sqrt(2 - sqrt(x)`
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following:
y = log(2x – 1)
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following: y = ex – 3
Find the derivative of the inverse function of the following : y = x2·ex
Find the derivative of the inverse function of the following : y = x cos x
Find the derivative of the inverse function of the following : y = x2 + log x
Find the derivative of the inverse function of the following : y = x log x
Find the derivative of the inverse of the following functions, and also find their value at the points indicated against them. y = 3x2 + 2logx3
Find the derivative of the inverse of the following functions, and also find their value at the points indicated against them. y = sin(x – 2) + x2
If f(x) = x3 + x – 2, find (f–1)'(0).
Using derivative, prove that: tan –1x + cot–1x = `pi/(2)`
Using derivative, prove that: sec–1x + cosec–1x = `pi/(2)` ...[for |x| ≥ 1]
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 18x + log(x - 4).
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 25x + log(1 + x2)
Find the marginal demand of a commodity where demand is x and price is y.
y = `(5"x" + 9)/(2"x" - 10)`
State whether the following is True or False:
If f′ is the derivative of f, then the derivative of the inverse of f is the inverse of f′.
If g is the inverse of f and f'(x) = `1/(1 + x^4)` then g'(x) = ______
Let f(x) = x5 + 2x – 3 find (f−1)'(-3)
Differentiate `tan^-1[(sqrt(1 + x^2) - 1)/x]` w.r. to `tan^-1[(2x sqrt(1 - x^2))/(1 - 2x^2)]`
Choose the correct alternative:
What is the rate of change of demand (x) of a commodity with respect to its price (y) if y = 10 + x + 25x3.
Choose the correct alternative:
If xm. yn = `("x" + "y")^(("m" + "n"))`, then `("dy")/("dx")` = ?
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 5 + x2e–x + 2x
Find rate of change of demand (x) of a commodity with respect to its price (y) if y = `(3x + 7)/(2x^2 + 5)`
The rate of change of demand (x) of a commodity with respect to its price (y), if y = 20 + 15x + x3.
Solution: Let y = 20 + 15x + x3
Diff. w.r.to x, we get
`("d"y)/("d"x) = square + square + square`
∴ `("d"y)/("d"x)` = 15 + 3x2
∴ By derivative of the inverse function,
`("d"x)/("d"y) 1/square, ("d"y)/("d"x) ≠ 0`
∴ Rate of change of demand with respect to price = `1/(square + square)`
If `int (dx)/(4x^2 - 1)` = A log `((2x - 1)/(2x + 1))` + c, then A = ______.
I.F. of dx = y (x + y ) dy is a function of ______.
If y = `sin^-1((2tanx)/(1 + tan^2x))`, find `dy/dx`.
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2.
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2
Find the rate of change of demand (x) of a commodity with respect to its price (y) if `y=12+10x+25x^2`