Advertisements
Advertisements
प्रश्न
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f-1(y) in the following: y = `sqrt(2 - sqrt(x)`
उत्तर
y = `sqrt(2 - sqrt(x)` ...(1)
We have to find the inverse function of y = f(x), i.e x in terms of y.
From (1),
y2 = `2 - sqrt(x) ∴ sqrt(x) = 2 - y^2`
∴ x = (2 – y2)2
∴ x = f-1(y) = (2 – y2)2
∴ `"dx"/"dy" = "d"/"dy"(2 - y^2)^2`
= `2(2 - y^2)."d"/"dy"(2 - y^2)`
= 2(2 – y2).(0 – 2y)
= –4y(2 – y2)
= `-4sqrt(2 - sqrt(x))(2 - 2 + sqrt(x))` ...[By (1)]
= `-4sqrt(x)sqrt(2 - sqrt(x)`
∴ `"dy"/"dx" = (1)/(("dx"/"dy")`
= `-(1)/(4sqrt(x)sqrt(2 - sqrt(x)`.
APPEARS IN
संबंधित प्रश्न
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following:
y = log(2x – 1)
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following: y = 2x + 3
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following: y = `log_2(x/2)`
Find the derivative of the inverse function of the following : y = x2·ex
Find the derivative of the inverse function of the following : y = x ·7x
Find the derivative of the inverse of the following functions, and also find their value at the points indicated against them. y = x5 + 2x3 + 3x, at x = 1
Find the derivative of the inverse of the following functions, and also find their value at the points indicated against them. y = 3x2 + 2logx3
If f(x) = x3 + x – 2, find (f–1)'(0).
Choose the correct option from the given alternatives :
If g is the inverse of function f and f'(x) = `(1)/(1 + x)`, then the value of g'(x) is equal to :
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 18x + log(x - 4).
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 25x + log(1 + x2)
State whether the following is True or False:
If f′ is the derivative of f, then the derivative of the inverse of f is the inverse of f′.
If `"x"^3 + "y"^2 + "xy" = 7` Find `"dy"/"dx"`
If `"x"^3"y"^3 = "x"^2 - "y"^2`, Find `"dy"/"dx"`
If g is the inverse of f and f'(x) = `1/(1 + x^4)` then g'(x) = ______
Find the derivative of the inverse of function y = 2x3 – 6x and calculate its value at x = −2
Let f(x) = x5 + 2x – 3 find (f−1)'(-3)
Differentiate `tan^-1[(sqrt(1 + x^2) - 1)/x]` w.r. to `tan^-1[(2x sqrt(1 - x^2))/(1 - 2x^2)]`
Choose the correct alternative:
What is the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(3x + 7)/(2x^2 + 5)`
State whether the following statement is True or False:
If y = 10x + 1, then `("d"y)/("d"x)` = 10x.log10
State whether the following statement is True or False:
If y = 7x + 1, then the rate of change of demand (x) of a commodity with respect to its price (y) is 7
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 5 + x2e–x + 2x
Find rate of change of demand (x) of a commodity with respect to its price (y) if y = `(3x + 7)/(2x^2 + 5)`
If `int (dx)/(4x^2 - 1)` = A log `((2x - 1)/(2x + 1))` + c, then A = ______.
I.F. of dx = y (x + y ) dy is a function of ______.
Find `dy/dx`, if y = `sec^-1((1 + x^2)/(1 - x^2))`.
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2.
Find the rate of change of demand (x) of a commodity with respect to its price (y) if
y = `12 + 10x + 25x^2`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if `y=12+10x+25x^2`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2.