Advertisements
Advertisements
प्रश्न
Find the derivative of the inverse function of the following : y = x2·ex
उत्तर
y = x2·ex
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"(x^2.e^x)`
= `x^2"d"/"dx"(e^x) + e^x"d"/"dx"(x^2)`
= x2·ex + ex x 2x
= xex (x + 2)
The derivative of inverse function of y = f(x) is given by
`"dx"/"dy" = (1)/(("dy"/"dx")`
= `(1)/(xe^x(x + 2)`.
APPEARS IN
संबंधित प्रश्न
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f-1(y) in the following: y = `root(3)(x - 2)`
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following:
y = log(2x – 1)
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following: y = e2x-3
Find the derivative of the inverse function of the following : y = x cos x
Find the derivative of the inverse function of the following : y = x ·7x
Find the derivative of the inverse function of the following : y = x2 + log x
Find the derivative of the inverse of the following functions, and also find their value at the points indicated against them. y = ex + 3x + 2
Find the derivative of the inverse of the following functions, and also find their value at the points indicated against them. y = sin(x – 2) + x2
If f(x) = x3 + x – 2, find (f–1)'(0).
Using derivative, prove that: tan –1x + cot–1x = `pi/(2)`
If y = f(x) is a differentiable function of x, then show that `(d^2x)/(dy^2) = -(dy/dx)^-3.("d^2y)/(dx^2)`.
Find the marginal demand of a commodity where demand is x and price is y.
y = `("x + 2")/("x"^2 + 1)`
Find the marginal demand of a commodity where demand is x and price is y.
y = `(5"x" + 9)/(2"x" - 10)`
State whether the following is True or False:
If f′ is the derivative of f, then the derivative of the inverse of f is the inverse of f′.
If y = `"x"^3 + 3"xy"^2 + 3"x"^2"y"` Find `"dy"/"dx"`
If `"x"^3"y"^3 = "x"^2 - "y"^2`, Find `"dy"/"dx"`
Differentiate `tan^-1[(sqrt(1 + x^2) - 1)/x]` w.r. to `tan^-1[(2x sqrt(1 - x^2))/(1 - 2x^2)]`
The rate of change of demand (x) of a commodity with respect to its price (y) is ______ if y = 5 + x2e–x + 2x
The rate of change of demand (x) of a commodity with respect to its price (y) is ______ if y = xe–x + 7
State whether the following statement is True or False:
If y = 10x + 1, then `("d"y)/("d"x)` = 10x.log10
State whether the following statement is True or False:
If y = 7x + 1, then the rate of change of demand (x) of a commodity with respect to its price (y) is 7
The rate of change of demand (x) of a commodity with respect to its price (y), if y = 20 + 15x + x3.
Solution: Let y = 20 + 15x + x3
Diff. w.r.to x, we get
`("d"y)/("d"x) = square + square + square`
∴ `("d"y)/("d"x)` = 15 + 3x2
∴ By derivative of the inverse function,
`("d"x)/("d"y) 1/square, ("d"y)/("d"x) ≠ 0`
∴ Rate of change of demand with respect to price = `1/(square + square)`
If `int (dx)/(4x^2 - 1)` = A log `((2x - 1)/(2x + 1))` + c, then A = ______.
The I.F. of differential equation `dy/dx+y/x=x^2-3 "is" log x.`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2.
Find `dy/dx`, if y = `sec^-1((1 + x^2)/(1 - x^2))`.
If y = `cos^-1 sqrt((1 + x^2)/2`, then `dy/dx` = ______.
If y = `sin^-1((2tanx)/(1 + tan^2x))`, find `dy/dx`.
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2.
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2.