Advertisements
Advertisements
प्रश्न
Find the derivative of the inverse of the following functions, and also find their value at the points indicated against them. y = sin(x – 2) + x2
उत्तर
y = sin(x – 2) + x2
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"[sin(x - 2) + x^2]`
= `"d"/"dx"[sin(x - 2)] + "d"/"dx"(x^2)`
= `cos(x - 2)."d"/"dx"(x - 2) + 2x`
= cos(x – 2).(1 – 0) + 2x
= cos(x – 2) + 2x
The derivative of inverse function of y = f(x) is given by
`"dx"/"dy" = (1)/(("dy"/"dx")`
= `(1)/(cos(x - 2) + 2x)`
At x = `2,"dx"/"dy"`
= `((1)/([cos(x - 2) + 2x]))_("at" x = 2)`
= `(1)/(cos0 + 2(2)`
= `(1)/(1 + 4)`
= `(1)/(5)`.
APPEARS IN
संबंधित प्रश्न
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following:
y = `sqrt(x)`
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f-1(y) in the following: y = `sqrt(2 - sqrt(x)`
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following: y = `log_2(x/2)`
Find the derivative of the inverse function of the following : y = x2·ex
Find the derivative of the inverse function of the following : y = x ·7x
Find the derivative of the inverse of the following functions, and also find their value at the points indicated against them. y = x5 + 2x3 + 3x, at x = 1
Find the derivative of the inverse of the following functions, and also find their value at the points indicated against them. y = 3x2 + 2logx3
Using derivative, prove that: tan –1x + cot–1x = `pi/(2)`
Using derivative, prove that: sec–1x + cosec–1x = `pi/(2)` ...[for |x| ≥ 1]
Choose the correct option from the given alternatives :
If g is the inverse of function f and f'(x) = `(1)/(1 + x)`, then the value of g'(x) is equal to :
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2
Find the marginal demand of a commodity where demand is x and price is y.
y = `"x"*"e"^-"x" + 7`
Find the marginal demand of a commodity where demand is x and price is y.
y = `("x + 2")/("x"^2 + 1)`
If `"x"^3"y"^3 = "x"^2 - "y"^2`, Find `"dy"/"dx"`
Find the derivative of the inverse of function y = 2x3 – 6x and calculate its value at x = −2
Let f(x) = x5 + 2x – 3 find (f−1)'(-3)
Differentiate `tan^-1[(sqrt(1 + x^2) - 1)/x]` w.r. to `tan^-1[(2x sqrt(1 - x^2))/(1 - 2x^2)]`
Choose the correct alternative:
What is the rate of change of demand (x) of a commodity with respect to its price (y) if y = 10 + x + 25x3.
Choose the correct alternative:
If x = at2, y = 2at, then `("d"^2y)/("d"x^2)` = ?
State whether the following statement is True or False:
If y = 10x + 1, then `("d"y)/("d"x)` = 10x.log10
State whether the following statement is True or False:
If y = x2, then the rate of change of demand (x) of a commodity with respect to its price (y) is `1/(2x)`
If `int (dx)/(4x^2 - 1)` = A log `((2x - 1)/(2x + 1))` + c, then A = ______.
I.F. of dx = y (x + y ) dy is a function of ______.
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2.
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2.
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2.
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2
Find the rate of change of demand (x) of a commodity with respect to its price (y) if `y=12+10x+25x^2`