Advertisements
Advertisements
प्रश्न
Find the marginal demand of a commodity where demand is x and price is y.
y = `("x + 2")/("x"^2 + 1)`
उत्तर
y = `("x + 2")/("x"^2 + 1)`
Differentiating both sides w.r.t.x, we get
`"dy"/"dx" = "d"/"dx"(("x + 2")/("x"^2 + 1))`
`= (("x"^2 + 1) * "d"/"dx"("x + 2") - ("x + 2") * "d"/"dx" ("x"^2 + 1))/("x"^2 + 1)^2`
`= (("x"^2 + 1)(1 + 0) - ("x + 2")("2x" + 0))/("x"^2 + 1)^2`
`= (("x"^2 + 1)(1) - ("x + 2")("2x"))/("x"^2 + 1)^2`
`= ("x"^2 + 1 - 2"x"^2 - 4"x")/("x"^2 + 1)^2`
∴ `"dy"/"dx" = (1 - "4x" - "x"^2)/("x"^2 + 1)^2`
Now, by derivative of inverse function, the marginal demand of a commodity is
`"dx"/"dy" = 1/("dy"/"dx")`, where `"dy"/"dx" ne 0`
i.e., `"dx"/"dy" = 1/((1 - 4"x" - "x"^2)/("x"^2 + 1)^2) = ("x"^2 + 1)^2/(1 - 4"x" - "x"^2)`
APPEARS IN
संबंधित प्रश्न
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following: y = ex – 3
Find the derivative of the inverse function of the following : y = x log x
Find the derivative of the inverse of the following functions, and also find their value at the points indicated against them. y = x5 + 2x3 + 3x, at x = 1
Find the derivative of the inverse of the following functions, and also find their value at the points indicated against them. y = sin(x – 2) + x2
If y = f(x) is a differentiable function of x, then show that `(d^2x)/(dy^2) = -(dy/dx)^-3.("d^2y)/(dx^2)`.
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 25x + log(1 + x2)
If g is the inverse of f and f'(x) = `1/(1 + x^4)` then g'(x) = ______
Find the derivative of the inverse of function y = 2x3 – 6x and calculate its value at x = −2
Let f(x) = x5 + 2x – 3 find (f−1)'(-3)
Differentiate `tan^-1[(sqrt(1 + x^2) - 1)/x]` w.r. to `tan^-1[(2x sqrt(1 - x^2))/(1 - 2x^2)]`
Choose the correct alternative:
If xm. yn = `("x" + "y")^(("m" + "n"))`, then `("dy")/("dx")` = ?
Choose the correct alternative:
If x = at2, y = 2at, then `("d"^2y)/("d"x^2)` = ?
The rate of change of demand (x) of a commodity with respect to its price (y) is ______ if y = 5 + x2e–x + 2x
State whether the following statement is True or False:
If y = x2, then the rate of change of demand (x) of a commodity with respect to its price (y) is `1/(2x)`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 5 + x2e–x + 2x
Find rate of change of demand (x) of a commodity with respect to its price (y) if y = `(3x + 7)/(2x^2 + 5)`
If y = `cos^-1 sqrt((1 + x^2)/2`, then `dy/dx` = ______.
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2
Find the rate of change of demand (x) of a commodity with respect to its price (y) if `y=12+10x+25x^2`