हिंदी

Find the marginal demand of a commodity where demand is x and price is y. y = x + 2x2+1 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the marginal demand of a commodity where demand is x and price is y.

y = `("x + 2")/("x"^2 + 1)`

योग

उत्तर

y = `("x + 2")/("x"^2 + 1)`

Differentiating both sides w.r.t.x, we get

`"dy"/"dx" = "d"/"dx"(("x + 2")/("x"^2 + 1))`

`= (("x"^2 + 1) * "d"/"dx"("x + 2") - ("x + 2") * "d"/"dx" ("x"^2 + 1))/("x"^2 + 1)^2`

`= (("x"^2 + 1)(1 + 0) - ("x + 2")("2x" + 0))/("x"^2 + 1)^2`

`= (("x"^2 + 1)(1) - ("x + 2")("2x"))/("x"^2 + 1)^2`

`= ("x"^2 + 1 - 2"x"^2 - 4"x")/("x"^2 + 1)^2`

∴ `"dy"/"dx" = (1 - "4x" - "x"^2)/("x"^2 + 1)^2`

Now, by derivative of inverse function, the marginal demand of a commodity is

`"dx"/"dy" = 1/("dy"/"dx")`, where `"dy"/"dx" ne 0`

i.e., `"dx"/"dy" = 1/((1 - 4"x" - "x"^2)/("x"^2 + 1)^2) = ("x"^2 + 1)^2/(1 - 4"x" - "x"^2)`

shaalaa.com
Derivatives of Inverse Functions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Differentiation - EXERCISE 3.2 [पृष्ठ ९२]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Differentiation
EXERCISE 3.2 | Q 2. 2) | पृष्ठ ९२

संबंधित प्रश्न

Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following: y = ex – 3


Find the derivative of the inverse function of the following : y = x log x


Find the derivative of the inverse of the following functions, and also find their value at the points indicated against them. y = x5 + 2x3 + 3x, at x = 1


Find the derivative of the inverse of the following functions, and also find their value at the points indicated against them. y = sin(x – 2) + x2 


If y = f(x) is a differentiable function of x, then show that `(d^2x)/(dy^2) = -(dy/dx)^-3.("d^2y)/(dx^2)`.


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 25x + log(1 + x2)


If g is the inverse of f and f'(x) = `1/(1 + x^4)` then g'(x) = ______


Find the derivative of the inverse of function y = 2x3 – 6x and calculate its value at x = −2


Let f(x) = x5 + 2x – 3 find (f−1)'(-3)


Differentiate `tan^-1[(sqrt(1 + x^2) - 1)/x]` w.r. to `tan^-1[(2x sqrt(1 - x^2))/(1 - 2x^2)]`


Choose the correct alternative:

If xm. yn = `("x" + "y")^(("m" + "n"))`, then `("dy")/("dx")` = ?


Choose the correct alternative:

If x = at2, y = 2at, then `("d"^2y)/("d"x^2)` = ?


The rate of change of demand (x) of a commodity with respect to its price (y) is ______ if y = 5 + x2e–x + 2x


State whether the following statement is True or False:

If y = x2, then the rate of change of demand (x) of a commodity with respect to its price (y) is `1/(2x)`


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 5 + x2e–x + 2x


Find rate of change of demand (x) of a commodity with respect to its price (y) if y = `(3x + 7)/(2x^2 + 5)`


If y = `cos^-1 sqrt((1 + x^2)/2`, then `dy/dx` = ______.


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2


Find the rate of change of demand (x) of a commodity with respect to its price (y) if `y=12+10x+25x^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×