English

Find the marginal demand of a commodity where demand is x and price is y. y = x + 2x2+1 - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the marginal demand of a commodity where demand is x and price is y.

y = `("x + 2")/("x"^2 + 1)`

Sum

Solution

y = `("x + 2")/("x"^2 + 1)`

Differentiating both sides w.r.t.x, we get

`"dy"/"dx" = "d"/"dx"(("x + 2")/("x"^2 + 1))`

`= (("x"^2 + 1) * "d"/"dx"("x + 2") - ("x + 2") * "d"/"dx" ("x"^2 + 1))/("x"^2 + 1)^2`

`= (("x"^2 + 1)(1 + 0) - ("x + 2")("2x" + 0))/("x"^2 + 1)^2`

`= (("x"^2 + 1)(1) - ("x + 2")("2x"))/("x"^2 + 1)^2`

`= ("x"^2 + 1 - 2"x"^2 - 4"x")/("x"^2 + 1)^2`

∴ `"dy"/"dx" = (1 - "4x" - "x"^2)/("x"^2 + 1)^2`

Now, by derivative of inverse function, the marginal demand of a commodity is

`"dx"/"dy" = 1/("dy"/"dx")`, where `"dy"/"dx" ne 0`

i.e., `"dx"/"dy" = 1/((1 - 4"x" - "x"^2)/("x"^2 + 1)^2) = ("x"^2 + 1)^2/(1 - 4"x" - "x"^2)`

shaalaa.com
Derivatives of Inverse Functions
  Is there an error in this question or solution?
Chapter 3: Differentiation - EXERCISE 3.2 [Page 92]

APPEARS IN

RELATED QUESTIONS

Find the derivative of the function y = f(x) using the derivative of the inverse function x = f-1(y) in the following: y = `root(3)(x - 2)`


Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following: y = 2x + 3


Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following: y = ex – 3


Find the derivative of the inverse of the following functions, and also find their value at the points indicated against them. y = ex + 3x + 2


Find the derivative of the inverse of the following functions, and also find their value at the points indicated against them. y = 3x2 + 2logx3 


Find the derivative of the inverse of the following functions, and also find their value at the points indicated against them. y = sin(x – 2) + x2 


Choose the correct option from the given alternatives :

If g is the inverse of function f and f'(x) = `(1)/(1 + x)`, then the value of g'(x) is equal to :


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 18x + log(x - 4).


Find the derivative of cos−1x w.r. to `sqrt(1 - x^2)`


Choose the correct alternative:

What is the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(3x + 7)/(2x^2 + 5)`


State whether the following statement is True or False:

If y = 10x + 1, then `("d"y)/("d"x)` = 10x.log10


The rate of change of demand (x) of a commodity with respect to its price (y), if y = 20 + 15x + x3.

Solution: Let y = 20 + 15x + x3

Diff. w.r.to x, we get

`("d"y)/("d"x) = square + square  + square`

∴ `("d"y)/("d"x)` = 15 + 3x2

∴ By derivative of the inverse function,

`("d"x)/("d"y)  1/square, ("d"y)/("d"x) ≠ 0`

∴ Rate of change of demand with respect to price = `1/(square + square)`


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2.


If y = `cos^-1 sqrt((1 + x^2)/2`, then `dy/dx` = ______.


If y = `sin^-1((2tanx)/(1 + tan^2x))`, find `dy/dx`.


Find the rate of change of demand (x) of a commodity with respect to its price (y) if  y = 12 + 10x + 25x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×