English

Find the derivative of the inverse of the following functions, and also find their value at the points indicated against them. y = 3x2 + 2logx3 - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the derivative of the inverse of the following functions, and also find their value at the points indicated against them. y = 3x2 + 2logx3 

Sum

Solution

y = 3x2 + 2logx3 
= 3x2 + 6logx
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"(3x^2 + 6logx)`

= `3 xx 2x + 6 xx 1/x`

= `6x + 6/x`

= `(6x^2 + 6)/x`
The derivative of inverse function of y = f(x) is given by
`"dx"/"dy" = (1)/(("dy"/"dx")`

= `(1)/(((6x^2 + 6)/x)`

= `x/(6x^2 + 6)`

At x = `1, "dx"/"dy"`

= `(x/(6x^2 + 6))_(at  x = 1)`

= `(1)/(6(1)^2 + 6)`

= `(1)/(12)`.

shaalaa.com
Derivatives of Inverse Functions
  Is there an error in this question or solution?
Chapter 1: Differentiation - Exercise 1.2 [Page 29]

RELATED QUESTIONS

Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following:

y = `sqrt(x)`


Find the derivative of the function y = f(x) using the derivative of the inverse function x = f-1(y) in the following: y = `sqrt(2 - sqrt(x)`


Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following:

y = log(2x – 1)


Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following: y = 2x + 3


Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following: y = ex – 3


Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following: y = `log_2(x/2)`


Find the derivative of the inverse function of the following : y = x ·7


Find the derivative of the inverse of the following functions, and also find their value at the points indicated against them. y = x5 + 2x3 + 3x, at x = 1


Find the derivative of the inverse of the following functions, and also find their value at the points indicated against them. y = sin(x – 2) + x2 


If f(x) = x3 + x – 2, find (f–1)'(0).


Choose the correct option from the given alternatives :

If g is the inverse of function f and f'(x) = `(1)/(1 + x)`, then the value of g'(x) is equal to :


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 25x + log(1 + x2)


Find the marginal demand of a commodity where demand is x and price is y.

y = `(5"x" + 9)/(2"x" - 10)`


If `"x"^3 + "y"^2 + "xy" = 7` Find `"dy"/"dx"`


Find the derivative of the inverse of function y = 2x3 – 6x and calculate its value at x = −2


Differentiate `tan^-1[(sqrt(1 + x^2) - 1)/x]` w.r. to `tan^-1[(2x sqrt(1 - x^2))/(1 - 2x^2)]`


Choose the correct alternative:

What is the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(3x + 7)/(2x^2 + 5)`


Choose the correct alternative:

If xm. yn = `("x" + "y")^(("m" + "n"))`, then `("dy")/("dx")` = ?


The rate of change of demand (x) of a commodity with respect to its price (y) is ______ if y = 5 + x2e–x + 2x


State whether the following statement is True or False:

If y = 10x + 1, then `("d"y)/("d"x)` = 10x.log10


State whether the following statement is True or False:

If y = 7x + 1, then the rate of change of demand (x) of a commodity with respect to its price (y) is 7


State whether the following statement is True or False:

If y = x2, then the rate of change of demand (x) of a commodity with respect to its price (y) is `1/(2x)`


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 5 + x2e–x + 2x


The rate of change of demand (x) of a commodity with respect to its price (y), if y = 20 + 15x + x3.

Solution: Let y = 20 + 15x + x3

Diff. w.r.to x, we get

`("d"y)/("d"x) = square + square  + square`

∴ `("d"y)/("d"x)` = 15 + 3x2

∴ By derivative of the inverse function,

`("d"x)/("d"y)  1/square, ("d"y)/("d"x) ≠ 0`

∴ Rate of change of demand with respect to price = `1/(square + square)`


If `int (dx)/(4x^2 - 1)` = A log `((2x - 1)/(2x + 1))` + c, then A = ______.


The I.F. of differential equation `dy/dx+y/x=x^2-3  "is" log x.`


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2.


Find `dy/dx`, if y = `sec^-1((1 + x^2)/(1 - x^2))`.


If y = `cos^-1 sqrt((1 + x^2)/2`, then `dy/dx` = ______.


If y = `sin^-1((2tanx)/(1 + tan^2x))`, find `dy/dx`.


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2.


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×