Advertisements
Advertisements
प्रश्न
Find the derivative of the inverse function of the following : y = x cos x
उत्तर
y = x cos x
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"(xcosx)`
= `x"d"/"dx"(cosx) + cosx"d"/"dx"(x)`
= x(– sinx) + cosx x 1
= cosx –x sinx
The derivative of inverse function of y = f(x) is given by
`"dx"/"dy" = (1)/(("dy"/"dx")`
= `(1)/(cosx - xsinx)`.
APPEARS IN
संबंधित प्रश्न
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following:
y = `sqrt(x)`
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f-1(y) in the following: y = `root(3)(x - 2)`
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following:
y = log(2x – 1)
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following: y = ex – 3
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following: y = `log_2(x/2)`
Find the derivative of the inverse function of the following : y = x2·ex
Find the derivative of the inverse function of the following : y = x log x
Find the derivative of the inverse of the following functions, and also find their value at the points indicated against them. y = ex + 3x + 2
Find the derivative of the inverse of the following functions, and also find their value at the points indicated against them. y = 3x2 + 2logx3
Find the derivative of the inverse of the following functions, and also find their value at the points indicated against them. y = sin(x – 2) + x2
If f(x) = x3 + x – 2, find (f–1)'(0).
Choose the correct option from the given alternatives :
If g is the inverse of function f and f'(x) = `(1)/(1 + x)`, then the value of g'(x) is equal to :
Find the marginal demand of a commodity where demand is x and price is y.
y = `"x"*"e"^-"x" + 7`
Find the marginal demand of a commodity where demand is x and price is y.
y = `(5"x" + 9)/(2"x" - 10)`
If y = `"x"^3 + 3"xy"^2 + 3"x"^2"y"` Find `"dy"/"dx"`
If `"x"^3"y"^3 = "x"^2 - "y"^2`, Find `"dy"/"dx"`
If y = `tan^-1((2x)/(1 - x^2))`, x ∈ (−1, 1) then `("d"y)/("d"x)` = ______.
Find the derivative of the inverse of function y = 2x3 – 6x and calculate its value at x = −2
Let f(x) = x5 + 2x – 3 find (f−1)'(-3)
Find the derivative of cos−1x w.r. to `sqrt(1 - x^2)`
Differentiate `tan^-1[(sqrt(1 + x^2) - 1)/x]` w.r. to `tan^-1[(2x sqrt(1 - x^2))/(1 - 2x^2)]`
Choose the correct alternative:
What is the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(3x + 7)/(2x^2 + 5)`
Choose the correct alternative:
If xm. yn = `("x" + "y")^(("m" + "n"))`, then `("dy")/("dx")` = ?
The rate of change of demand (x) of a commodity with respect to its price (y) is ______ if y = 5 + x2e–x + 2x
State whether the following statement is True or False:
If y = x2, then the rate of change of demand (x) of a commodity with respect to its price (y) is `1/(2x)`
The rate of change of demand (x) of a commodity with respect to its price (y), if y = 20 + 15x + x3.
Solution: Let y = 20 + 15x + x3
Diff. w.r.to x, we get
`("d"y)/("d"x) = square + square + square`
∴ `("d"y)/("d"x)` = 15 + 3x2
∴ By derivative of the inverse function,
`("d"x)/("d"y) 1/square, ("d"y)/("d"x) ≠ 0`
∴ Rate of change of demand with respect to price = `1/(square + square)`
If `int (dx)/(4x^2 - 1)` = A log `((2x - 1)/(2x + 1))` + c, then A = ______.
I.F. of dx = y (x + y ) dy is a function of ______.
The I.F. of differential equation `dy/dx+y/x=x^2-3 "is" log x.`
Find `dy/dx`, if y = `sec^-1((1 + x^2)/(1 - x^2))`.
If y = `sin^-1((2tanx)/(1 + tan^2x))`, find `dy/dx`.
Find the rate of change of demand (x) of a commodity with respect to its price (y) if
y = `12 + 10x + 25x^2`