Advertisements
Advertisements
Question
If `"x"^7*"y"^9 = ("x + y")^16`, then show that `"dy"/"dx" = "y"/"x"`
Solution
`"x"^7*"y"^9 = ("x + y")^16`
Taking logarithm of both sides, we get
log `"x"^7*"y"^9` = log `("x + y")^16`
∴ log `"x"^7 + log "y"^9 = 16 log ("x + y")`
∴ 7 log x + 9 log y = 16 log (x + y)
Differentiating both sides w.r.t. x, we get
`7(1/"x") + 9(1/"y") "dy"/"dx" = 16(1/("x + y")) "d"/"dx" ("x + y")`
∴ `7/"x" + 9/"y" "dy"/"dx" = 16/("x + y") (1 + "dy"/"dx")`
∴ `7/"x" + 9/"y" "dy"/"dx" = 16/("x + y") + 16/("x + y") "dy"/"dx"`
∴ `9/"y" "dy"/"dx" - 16/("x + y") "dy"/"dx" = 16/("x + y") - 7/"x"`
∴ `(9/"y" - 16/("x + y")) "dy"/"dx" = 16/("x + y") - 7/"x"`
∴ `[("9x" + "9y" - 16"y")/("y"("x + y"))] "dy"/"dx" = (16"x" - 7"x" - 7"y")/("x"("x + y"))`
∴ `[("9x" - 7"y")/("y"("x + y"))] "dy"/"dx" = ("9x" - 7"y")/("x"("x + y"))`
∴ `"dy"/"dx" = ("9x" - 7"y")/("x"("x + y")) xx ("y"("x + y"))/("9x" - 7"y")`
∴ `"dy"/"dx" = "y"/"x"`
APPEARS IN
RELATED QUESTIONS
Find dy/dx if x sin y + y sin x = 0.
Find `dy/dx` in the following:
ax + by2 = cos y
Find `dy/dx` in the following:
xy + y2 = tan x + y
Find `dx/dy` in the following.
x2 + xy + y2 = 100
Find `dy/dx` in the following.
x3 + x2y + xy2 + y3 = 81
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
Find `"dy"/"dx"` ; if x = sin3θ , y = cos3θ
Find `(dy)/(dx) if y = cos^-1 (√x)`
Differentiate tan-1 (cot 2x) w.r.t.x.
Find `"dy"/"dx"` if x = at2, y = 2at.
Find `"dy"/"dx"`, if : `x = cos^-1(4t^3 - 3t), y = tan^-1(sqrt(1 - t^2)/t)`.
Find `"dy"/"dx"` if : x = a cos3θ, y = a sin3θ at θ = `pi/(3)`
Differentiate `cos^-1((1 - x^2)/(1 + x^2)) w.r.t. tan^-1 x.`
Differentiate `tan^-1((sqrt(1 + x^2) - 1)/(x)) w.r.t tan^-1((2xsqrt(1 - x^2))/(1 - 2x^2))`.
Find `(d^2y)/(dx^2)` of the following : x = a(θ – sin θ), y = a(1 – cos θ)
Find `(d^2y)/(dx^2)` of the following : x = sinθ, y = sin3θ at θ = `pi/(2)`
If x = at2 and y = 2at, then show that `xy(d^2y)/(dx^2) + a` = 0.
If x = cos t, y = emt, show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" - m^2y` = 0.
If y = eax.sin(bx), show that y2 – 2ay1 + (a2 + b2)y = 0.
If 2y = `sqrt(x + 1) + sqrt(x - 1)`, show that 4(x2 – 1)y2 + 4xy1 – y = 0.
Find the nth derivative of the following : cos x
Choose the correct option from the given alternatives :
If f(x) = `sin^-1((4^(x + 1/2))/(1 + 2^(4x)))`, which of the following is not the derivative of f(x)?
Differentiate the following w.r.t. x : `sin[2tan^-1(sqrt((1 - x)/(1 + x)))]`
Differentiate the following w.r.t. x : `sin^2[cot^-1(sqrt((1 + x)/(1 - x)))]`
Differentiate the following w.r.t. x : `cos^-1((sqrt(1 + x) - sqrt(1 - x))/2)`
Find `"dy"/"dx"` if, x3 + y3 + 4x3y = 0
Find `"dy"/"dx"` if, x3 + x2y + xy2 + y3 = 81
Find `"dy"/"dx"` if, xy = log (xy)
If y = `("x" + sqrt("x"^2 - 1))^"m"`, then `("x"^2 - 1) "dy"/"dx"` = ______.
`(dy)/(dx)` of `xy + y^2 = tan x + y` is
Find `(d^2y)/(dy^2)`, if y = e4x
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
If log (x+y) = log (xy) + a then show that, `dy/dx= (-y^2)/(x^2)`
Find `dy/dx` if, `x = e^(3t), y = e^sqrtt`
If log(x + y) = log(xy) + a then show that, `dy/dx=(-y^2)/x^2`