Advertisements
Advertisements
Question
If y = `("x" + sqrt("x"^2 - 1))^"m"`, then `("x"^2 - 1) "dy"/"dx"` = ______.
Solution
If y = `("x" + sqrt("x"^2 - 1))^"m"`, then `("x"^2 - 1) "dy"/"dx"` = my.
Explanation:
y = `("x" + sqrt("x"^2 - 1))^"m"`
Differentiating both sides w.r.t. x, we get
`"dy"/"dx" = "m" ("x" + sqrt("x"^2 - 1))^"m - 1" * "d"/"dx" ("x" + sqrt("x"^2 - 1))`
`= "m" ("x" + sqrt("x"^2 - 1))^"m"/("x" + sqrt("x"^2 - 1))^1 * [1 + 1/(2sqrt("x"^2 - 1)) * "d"/"dx" ("x"^2 - 1)]`
`= "my"/("x" + sqrt("x"^2 - 1)) xx [(1 + 1/(2sqrt("x"^2 - 1))) ("2x")]`
`= "my"/("x" + sqrt("x"^2 - 1)) xx (1 + "x"/sqrt("x"^2 - 1))`
∴ `"dy"/"dx" = "my"/("x" + sqrt("x"^2 - 1)) xx (sqrt("x"^2 - 1) + "x")/sqrt("x"^2 - 1)`
∴ `"dy"/"dx" = "my"/sqrt("x"^2 - 1)`
∴ `sqrt("x"^2 - 1) * "dy"/"dx" = "my"`
APPEARS IN
RELATED QUESTIONS
If xpyq = (x + y)p+q then Prove that `dy/dx = y/x`
Find `dy/dx` in the following:
ax + by2 = cos y
Find `dy/dx` in the following:
sin2 x + cos2 y = 1
Write the derivative of f (x) = |x|3 at x = 0.
If \[\lim_{x \to c} \frac{f\left( x \right) - f\left( c \right)}{x - c}\] exists finitely, write the value of \[\lim_{x \to c} f\left( x \right)\]
Find `dy/dx if x^3 + y^2 + xy = 7`
Find `(dy)/(dx) , "If" x^3 + y^2 + xy = 10`
Find `(dy)/(dx) if y = cos^-1 (√x)`
Discuss extreme values of the function f(x) = x.logx
If y = `sqrt(cosx + sqrt(cosx + sqrt(cosx + ... ∞)`, then show that `"dy"/"dx" = sinx/(1 - 2y)`.
Find `"dy"/"dx"`, if : `x = cos^-1((2t)/(1 + t^2)), y = sec^-1(sqrt(1 + t^2))`
Find `"dy"/"dx"`, if : `x = cos^-1(4t^3 - 3t), y = tan^-1(sqrt(1 - t^2)/t)`.
Find `"dy"/"dx"` if : x = t2 + t + 1, y = `sin((pit)/2) + cos((pit)/2) "at" t = 1`
Find `dy/dx` if : x = 2 cos t + cos 2t, y = 2 sin t – sin 2t at t = `pi/(4)`
Find `"dy"/"dx"` if : x = t + 2sin (πt), y = 3t – cos (πt) at t = `(1)/(2)`
DIfferentiate x sin x w.r.t. tan x.
Differentiate `tan^-1((sqrt(1 + x^2) - 1)/(x)) w.r.t tan^-1((2xsqrt(1 - x^2))/(1 - 2x^2))`.
Find the nth derivative of the following : eax+b
Find the nth derivative of the following : sin (ax + b)
DIfferentiate `tan^-1((sqrt(1 + x^2) - 1)/x) w.r.t. tan^-1(sqrt((2xsqrt(1 - x^2))/(1 - 2x^2)))`.
If x= a cos θ, y = b sin θ, show that `a^2[y(d^2y)/(dx^2) + (dy/dx)^2] + b^2` = 0.
Find `"dy"/"dx"` if, x3 + y3 + 4x3y = 0
Find `"dy"/"dx"` if, yex + xey = 1
Find `"dy"/"dx"` if, `"x"^"y" = "e"^("x - y")`
Solve the following:
If `"e"^"x" + "e"^"y" = "e"^((x + y))` then show that, `"dy"/"dx" = - "e"^"y - x"`.
If `"x"^7*"y"^9 = ("x + y")^16`, then show that `"dy"/"dx" = "y"/"x"`
If x2 + y2 = t + `1/"t"` and x4 + y4 = t2 + `1/"t"^2` then `("d"y)/("d"x)` = ______
State whether the following statement is True or False:
If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x) = 1/(2sqrt(x)) + 1/(2sqrt(y)) = 1/(2sqrt("a"))`
`"If" log(x+y) = log(xy)+a "then show that", dy/dx=(-y^2)/x^2`
If log(x+y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Find `dy/dx` if, x = `e^(3t)`, y = `e^sqrtt`
If log (x + y) = log (xy) + a then show that, `dy/dx = (−y^2)/x^ 2`
Find `dy / dx` if, x = `e^(3t), y = e^sqrt t`
If log(x + y) = log(xy) + a then show that, `dy/dx = (−y^2)/x^2`
If log(x + y) = log(xy) + a, then show that `dy/dx = (-y^2)/x^2`