English

If y = xxm(x+x2-1)m, then xdydx(x2-1)dydx = ______. - Mathematics and Statistics

Advertisements
Advertisements

Question

If y = `("x" + sqrt("x"^2 - 1))^"m"`, then `("x"^2 - 1) "dy"/"dx"` = ______.

Fill in the Blanks

Solution

If y = `("x" + sqrt("x"^2 - 1))^"m"`, then `("x"^2 - 1) "dy"/"dx"` = my.

Explanation:

y = `("x" + sqrt("x"^2 - 1))^"m"`

Differentiating both sides w.r.t. x, we get

`"dy"/"dx" = "m" ("x" + sqrt("x"^2 - 1))^"m - 1" * "d"/"dx" ("x" + sqrt("x"^2 - 1))`

`= "m" ("x" + sqrt("x"^2 - 1))^"m"/("x" + sqrt("x"^2 - 1))^1 * [1 + 1/(2sqrt("x"^2 - 1)) * "d"/"dx" ("x"^2 - 1)]`

`= "my"/("x" + sqrt("x"^2 - 1)) xx [(1 + 1/(2sqrt("x"^2 - 1))) ("2x")]`

`= "my"/("x" + sqrt("x"^2 - 1)) xx (1 + "x"/sqrt("x"^2 - 1))`

∴ `"dy"/"dx" = "my"/("x" + sqrt("x"^2 - 1)) xx (sqrt("x"^2 - 1) + "x")/sqrt("x"^2 - 1)`

∴ `"dy"/"dx" = "my"/sqrt("x"^2 - 1)`

∴ `sqrt("x"^2 - 1) * "dy"/"dx" = "my"`

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Differentiation - MISCELLANEOUS EXERCISE - 3 [Page 100]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
Chapter 3 Differentiation
MISCELLANEOUS EXERCISE - 3 | Q II] 10) | Page 100

RELATED QUESTIONS

If xpyq = (x + y)p+q then Prove that `dy/dx = y/x`


Find `dy/dx` in the following:

ax + by2 = cos y


Find `dy/dx` in the following:

sin2 x + cos2 y = 1


Write the derivative of f (x) = |x|3 at x = 0.


If  \[\lim_{x \to c} \frac{f\left( x \right) - f\left( c \right)}{x - c}\]  exists finitely, write the value of  \[\lim_{x \to c} f\left( x \right)\]


Find `dy/dx if x^3 + y^2 + xy = 7`


Find `(dy)/(dx) , "If"   x^3 + y^2 + xy = 10`


Find `(dy)/(dx) if y = cos^-1 (√x)`


Discuss extreme values of the function f(x) = x.logx


If y = `sqrt(cosx + sqrt(cosx + sqrt(cosx + ... ∞)`, then show that `"dy"/"dx" = sinx/(1 - 2y)`.


Find `"dy"/"dx"`, if : `x = cos^-1((2t)/(1 + t^2)), y = sec^-1(sqrt(1 + t^2))`


Find `"dy"/"dx"`, if : `x = cos^-1(4t^3 - 3t), y = tan^-1(sqrt(1 - t^2)/t)`.


Find `"dy"/"dx"` if : x = t2 + t + 1, y = `sin((pit)/2) + cos((pit)/2) "at"  t = 1`


Find `dy/dx` if : x = 2 cos t + cos 2t, y = 2 sin t – sin 2t at t = `pi/(4)`


Find `"dy"/"dx"` if : x = t + 2sin (πt), y = 3t – cos (πt) at t = `(1)/(2)`


DIfferentiate x sin x w.r.t. tan x.


Differentiate `tan^-1((sqrt(1 + x^2) - 1)/(x)) w.r.t  tan^-1((2xsqrt(1 - x^2))/(1 - 2x^2))`.


Find the nth derivative of the following : eax+b 


Find the nth derivative of the following : sin (ax + b)


DIfferentiate `tan^-1((sqrt(1 + x^2) - 1)/x) w.r.t. tan^-1(sqrt((2xsqrt(1 - x^2))/(1 - 2x^2)))`.


If x= a cos θ, y = b sin θ, show that `a^2[y(d^2y)/(dx^2) + (dy/dx)^2] + b^2` = 0.


Find `"dy"/"dx"` if, x3 + y3 + 4x3y = 0 


Find `"dy"/"dx"` if, yex + xey = 1 


Find `"dy"/"dx"` if, `"x"^"y" = "e"^("x - y")`


Solve the following:

If `"e"^"x" + "e"^"y" = "e"^((x + y))` then show that, `"dy"/"dx" = - "e"^"y - x"`.


If `"x"^7*"y"^9 = ("x + y")^16`, then show that `"dy"/"dx" = "y"/"x"`


If x2 + y2 = t + `1/"t"` and x4 + y4 = t2 + `1/"t"^2` then `("d"y)/("d"x)` = ______


State whether the following statement is True or False:

If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x) = 1/(2sqrt(x)) + 1/(2sqrt(y)) = 1/(2sqrt("a"))`


`"If" log(x+y) = log(xy)+a  "then show that", dy/dx=(-y^2)/x^2`


If log(x+y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Find `dy/dx` if, x = `e^(3t)`, y = `e^sqrtt`


If log (x + y) = log (xy) + a then show that, `dy/dx = (−y^2)/x^ 2`


Find `dy / dx` if, x = `e^(3t), y = e^sqrt t` 


If log(x + y) = log(xy) + a then show that, `dy/dx = (−y^2)/x^2`


If log(x + y) = log(xy) + a, then show that `dy/dx = (-y^2)/x^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×