हिंदी

If y = xxm(x+x2-1)m, then xdydx(x2-1)dydx = ______. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If y = `("x" + sqrt("x"^2 - 1))^"m"`, then `("x"^2 - 1) "dy"/"dx"` = ______.

रिक्त स्थान भरें

उत्तर

If y = `("x" + sqrt("x"^2 - 1))^"m"`, then `("x"^2 - 1) "dy"/"dx"` = my.

Explanation:

y = `("x" + sqrt("x"^2 - 1))^"m"`

Differentiating both sides w.r.t. x, we get

`"dy"/"dx" = "m" ("x" + sqrt("x"^2 - 1))^"m - 1" * "d"/"dx" ("x" + sqrt("x"^2 - 1))`

`= "m" ("x" + sqrt("x"^2 - 1))^"m"/("x" + sqrt("x"^2 - 1))^1 * [1 + 1/(2sqrt("x"^2 - 1)) * "d"/"dx" ("x"^2 - 1)]`

`= "my"/("x" + sqrt("x"^2 - 1)) xx [(1 + 1/(2sqrt("x"^2 - 1))) ("2x")]`

`= "my"/("x" + sqrt("x"^2 - 1)) xx (1 + "x"/sqrt("x"^2 - 1))`

∴ `"dy"/"dx" = "my"/("x" + sqrt("x"^2 - 1)) xx (sqrt("x"^2 - 1) + "x")/sqrt("x"^2 - 1)`

∴ `"dy"/"dx" = "my"/sqrt("x"^2 - 1)`

∴ `sqrt("x"^2 - 1) * "dy"/"dx" = "my"`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Differentiation - MISCELLANEOUS EXERCISE - 3 [पृष्ठ १००]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Differentiation
MISCELLANEOUS EXERCISE - 3 | Q II] 10) | पृष्ठ १००

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find `dy/dx` in the following:

ax + by2 = cos y


Find `dx/dy` in the following.

x2 + xy + y2 = 100


Find `dy/dx` in the following.

x3 + x2y + xy2 + y3 = 81


If  \[f\left( x \right) = x^3 + 7 x^2 + 8x - 9\] 

, find f'(4).


Is |sin x| differentiable? What about cos |x|?


If f (x) = |x − 2| write whether f' (2) exists or not.


If  \[\lim_{x \to c} \frac{f\left( x \right) - f\left( c \right)}{x - c}\]  exists finitely, write the value of  \[\lim_{x \to c} f\left( x \right)\]


Find `"dy"/"dx"` ; if x = sin3θ , y = cos3θ


Find `"dy"/"dx"` ; if y = cos-1 `("2x" sqrt (1 - "x"^2))`


Differentiate tan-1 (cot 2x) w.r.t.x.


Find `"dy"/"dx"` if x = at2, y = 2at.


Find `"dy"/"dx"`, if : x = `(t + 1/t)^a, y = a^(t+1/t)`, where a > 0, a ≠ 1, t ≠ 0.


Find `"dy"/"dx"`, if : `x = cos^-1((2t)/(1 + t^2)), y = sec^-1(sqrt(1 + t^2))`


Find `"dy"/"dx"` if : x = t2 + t + 1, y = `sin((pit)/2) + cos((pit)/2) "at"  t = 1`


Find `dy/dx` if : x = 2 cos t + cos 2t, y = 2 sin t – sin 2t at t = `pi/(4)`


Differentiate `cos^-1((1 - x^2)/(1 + x^2)) w.r.t. tan^-1 x.`


If y = eax.sin(bx), show that y2 – 2ay1 + (a2 + b2)y = 0.


If y = sin (m cos–1x), then show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" + m^2y` = 0.


If x = a sin t – b cos t, y = a cos t + b sin t, show that `(d^2y)/(dx^2) = -(x^2 + y^2)/(y^3)`.


Find the nth derivative of the following : y = eax . cos (bx + c)


Find the nth derivative of the following:

y = e8x . cos (6x + 7)


Choose the correct option from the given alternatives :

If `xsqrt(y + 1) + ysqrt(x + 1) = 0 and x ≠ y, "then" "dy"/"dx"` = ........


Solve the following : 

f(x) = –x, for – 2 ≤ x < 0
= 2x, for 0 ≤ x < 2
= `(18 - x)/(4)`, for 2 < x ≤ 7
g(x) = 6 – 3x, for 0 ≤ x < 2
= `(2x - 4)/(3)`, for 2 < x ≤ 7
Let u (x) = f[g(x)], v(x) = g[f(x)] and w(x) = g[g(x)]. Find each derivative at x = 1, if it exists i.e. find u'(1), v' (1) and w'(1). If it doesn't exist, then explain why?


Differentiate the following w.r.t. x : `tan^-1((sqrt(x)(3 - x))/(1 - 3x))`


Differentiate `tan^-1((sqrt(1 + x^2) - 1)/x)` w.r.t. `cos^-1(sqrt((1 + sqrt(1 + x^2))/(2sqrt(1 + x^2))))`


Find `"dy"/"dx"` if, yex + xey = 1 


Find `"dy"/"dx"` if, xy = log (xy)


Choose the correct alternative.

If ax2 + 2hxy + by2 = 0 then `"dy"/"dx" = ?` 


`(dy)/(dx)` of `xy + y^2 = tan x + y` is


Differentiate w.r.t x (over no. 24 and 25) `e^x/sin x`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Find `dy/dx` if, x = `e^(3t)`, y = `e^sqrtt`


If log (x+y) = log (xy) + a then show that, `dy/dx= (-y^2)/(x^2)`


Find `dy/dx` if, x = e3t, y = `e^sqrtt`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Find `dy/dx"if", x= e^(3t), y=e^sqrtt`


Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`


If log(x + y) = log(xy) + a, then show that `dy/dx = (-y^2)/x^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×