Advertisements
Advertisements
प्रश्न
Find `dx/dy` in the following.
x2 + xy + y2 = 100
उत्तर
Since, x2 + xy + y2 = 100
Differentiating both sides with respect to x,
`=> d/dx (x^2) + {x dy/dx + y d/dx (x)} + d/dx (y^2) = d/dx (100)`
`=> 2x = x dy/dx + y xx 1 + 2y dy/dx = 0`
`=> 2x + x dy/dx + y + 2y dy/dx = 0`
`=> x dy/dx + 2y dy/dx = -2 x - 1`
`=> dy/dx (x + 2y) = - (2x - y)`
`dy/dx = (- 2x + y)/(x + 2y)`
APPEARS IN
संबंधित प्रश्न
If y=eax ,show that `xdy/dx=ylogy`
Find `dy/dx` in the following:
sin2 y + cos xy = k
Find `dy/dx` in the following:
sin2 x + cos2 y = 1
If for the function
\[\Phi \left( x \right) = \lambda x^2 + 7x - 4, \Phi'\left( 5 \right) = 97, \text { find } \lambda .\]
Examine the differentialibilty of the function f defined by
\[f\left( x \right) = \begin{cases}2x + 3 & \text { if }- 3 \leq x \leq - 2 \\ \begin{array}xx + 1 \\ x + 2\end{array} & \begin{array} i\text { if } - 2 \leq x < 0 \\\text { if } 0 \leq x \leq 1\end{array}\end{cases}\]
Is |sin x| differentiable? What about cos |x|?
If f (x) = |x − 2| write whether f' (2) exists or not.
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
If `sin^-1((x^5 - y^5)/(x^5 + y^5)) = pi/(6), "show that" "dy"/"dx" = x^4/(3y^4)`
If y = `sqrt(cosx + sqrt(cosx + sqrt(cosx + ... ∞)`, then show that `"dy"/"dx" = sinx/(1 - 2y)`.
Differentiate `tan^-1((x)/(sqrt(1 - x^2))) w.r.t. sec^-1((1)/(2x^2 - 1))`.
If `sec^-1((7x^3 - 5y^3)/(7^3 + 5y^3)) = "m", "show" (d^2y)/(dx^2)` = 0.
Find the nth derivative of the following:
`(1)/x`
Find the nth derivative of the following : `(1)/(3x - 5)`
Find the nth derivative of the following:
y = e8x . cos (6x + 7)
Choose the correct option from the given alternatives :
Let `f(1) = 3, f'(1) = -(1)/(3), g(1) = -4 and g'(1) =-(8)/(3).` The derivative of `sqrt([f(x)]^2 + [g(x)]^2` w.r.t. x at x = 1 is
Choose the correct option from the given alternatives :
If y = sin (2sin–1 x), then dx = ........
Differentiate the following w.r.t. x : `tan^-1[sqrt((sqrt(1 + x^2) + x)/(sqrt(1 + x^2) - x))]`
If `xsqrt(1 - y^2) + ysqrt(1 - x^2)` = 1, then show that `"dy"/"dx" = -sqrt((1 - y^2)/(1 - x^2)`.
If x sin (a + y) + sin a . cos (a + y) = 0, then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.
Differentiate log `[(sqrt(1 + x^2) + x)/(sqrt(1 + x^2 - x)]]` w.r.t. cos (log x).
If log y = log (sin x) – x2, show that `(d^2y)/(dx^2) + 4x "dy"/"dx" + (4x^2 + 3)y` = 0.
If y = `("x" + sqrt("x"^2 - 1))^"m"`, then `("x"^2 - 1) "dy"/"dx"` = ______.
Find `"dy"/"dx"` if x = `"e"^"3t", "y" = "e"^(sqrt"t")`.
If x2 + y2 = t + `1/"t"` and x4 + y4 = t2 + `1/"t"^2` then `("d"y)/("d"x)` = ______
If y = `sqrt(tansqrt(x)`, find `("d"y)/("d"x)`.
Find `(dy)/(dx)`, if `y = sin^-1 ((2x)/(1 + x^2))`
Differentiate w.r.t x (over no. 24 and 25) `e^x/sin x`
If y = `e^(m tan^-1x)` then show that `(1 + x^2) (d^2y)/(dx^2) + (2x - m) (dy)/(dx)` = 0
Find `(d^2y)/(dy^2)`, if y = e4x
If `tan ((x + y)/(x - y))` = k, then `dy/dx` is equal to ______.
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
If log (x+y) = log (xy) + a then show that, `dy/dx= (-y^2)/(x^2)`
Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`