Advertisements
Advertisements
प्रश्न
Find `dx/dy` in the following.
x2 + xy + y2 = 100
उत्तर
Since, x2 + xy + y2 = 100
Differentiating both sides with respect to x,
`=> d/dx (x^2) + {x dy/dx + y d/dx (x)} + d/dx (y^2) = d/dx (100)`
`=> 2x = x dy/dx + y xx 1 + 2y dy/dx = 0`
`=> 2x + x dy/dx + y + 2y dy/dx = 0`
`=> x dy/dx + 2y dy/dx = -2 x - 1`
`=> dy/dx (x + 2y) = - (2x - y)`
`dy/dx = (- 2x + y)/(x + 2y)`
APPEARS IN
संबंधित प्रश्न
Find dy/dx if x sin y + y sin x = 0.
Find `dy/dx` in the following:
sin2 y + cos xy = k
Find the derivative of the function f defined by f (x) = mx + c at x = 0.
Find `(dy)/(dx) , "If" x^3 + y^2 + xy = 10`
Discuss extreme values of the function f(x) = x.logx
Find `"dy"/"dx"` if x = at2, y = 2at.
Find `"dy"/"dx"` if x = a cot θ, y = b cosec θ
Find `"dy"/"dx"`, if : `x = cos^-1((2t)/(1 + t^2)), y = sec^-1(sqrt(1 + t^2))`
Find `"dy"/"dx"`, if : `x = cos^-1(4t^3 - 3t), y = tan^-1(sqrt(1 - t^2)/t)`.
Find `"dy"/"dx"` if : x = a cos3θ, y = a sin3θ at θ = `pi/(3)`
Differentiate xx w.r.t. xsix.
If x = cos t, y = emt, show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" - m^2y` = 0.
If y = x + tan x, show that `cos^2x.(d^2y)/(dx^2) - 2y + 2x` = 0.
If y = eax.sin(bx), show that y2 – 2ay1 + (a2 + b2)y = 0.
Find the nth derivative of the following : cos x
Suppose that the functions f and g and their derivatives with respect to x have the following values at x = 0 and x = 1:
x | f(x) | g(x) | f')x) | g'(x) |
0 | 1 | 5 | `(1)/(3)` | |
1 | 3 | – 4 | `-(1)/(3)` | `-(8)/(3)` |
(i) The derivative of f[g(x)] w.r.t. x at x = 0 is ......
(ii) The derivative of g[f(x)] w.r.t. x at x = 0 is ......
(iii) The value of `["d"/"dx"[x^(10) + f(x)]^(-2)]_(x = 1_` is ........
(iv) The derivative of f[(x + g(x))] w.r.t. x at x = 0 is ...
Differentiate the following w.r.t. x : `tan^-1((sqrt(x)(3 - x))/(1 - 3x))`
Differentiate the following w.r.t. x : `cos^-1((sqrt(1 + x) - sqrt(1 - x))/2)`
If `sqrt(y + x) + sqrt(y - x)` = c, show that `"dy"/"dx" = y/x - sqrt(y^2/x^2 - 1)`.
If y2 = a2cos2x + b2sin2x, show that `y + (d^2y)/(dx^2) = (a^2b^2)/y^3`
If y = Aemx + Benx, show that y2 – (m + n)y1 + mny = 0.
Find `"dy"/"dx"` if, x3 + x2y + xy2 + y3 = 81
Find `"dy"/"dx"` if, `"x"^"y" = "e"^("x - y")`
Solve the following:
If `"x"^5 * "y"^7 = ("x + y")^12` then show that, `"dy"/"dx" = "y"/"x"`
Choose the correct alternative.
If `"x"^4."y"^5 = ("x + y")^("m + 1")` then `"dy"/"dx" = "y"/"x"` then m = ?
State whether the following is True or False:
The derivative of `"x"^"m"*"y"^"n" = ("x + y")^("m + n")` is `"x"/"y"`
If `"x"^"a"*"y"^"b" = ("x + y")^("a + b")`, then show that `"dy"/"dx" = "y"/"x"`
Find `"dy"/"dx"` if x = `"e"^"3t", "y" = "e"^(sqrt"t")`.
If x = sin θ, y = tan θ, then find `("d"y)/("d"x)`.
State whether the following statement is True or False:
If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x) = 1/(2sqrt(x)) + 1/(2sqrt(y)) = 1/(2sqrt("a"))`
If y = `e^(m tan^-1x)` then show that `(1 + x^2) (d^2y)/(dx^2) + (2x - m) (dy)/(dx)` = 0
`"If" log(x+y) = log(xy)+a "then show that", dy/dx=(-y^2)/x^2`
Find `dy/dx` if , x = `e^(3t), y = e^(sqrtt)`
If y = `(x + sqrt(x^2 - 1))^m`, show that `(x^2 - 1)(d^2y)/(dx^2) + xdy/dx` = m2y
Find `dy/(dx) "if" , x = e^(3t), y = e^sqrtt`.