Advertisements
Advertisements
प्रश्न
If `"x"^"a"*"y"^"b" = ("x + y")^("a + b")`, then show that `"dy"/"dx" = "y"/"x"`
उत्तर
`"x"^"a"*"y"^"b" = ("x + y")^("a + b")`
Taking logarithm of both sides, we get
log (`"x"^"a"*"y"^"b"`) = log `("x + y")^("a + b")`
∴ log `"x"^"a" + log "y"^"b" = ("a + b") log ("x + y")`
∴ a log x + b log y = (a + b) log (x + y)
Differentiating both sides w.r.t. x, we get
`"a"(1/"x") + "b"(1/"y") "dy"/"dx" = ("a + b")(1/("x + y")) "d"/"dx" ("x + y")`
∴ `"a"/"x" + "b"/"y" "dy"/"dx" = ("a + b")/("x + y") (1 + "dy"/"dx")`
∴ `"a"/"x" + "b"/"y" "dy"/"dx" = ("a + b")/("x + y") + ("a + b")/("x + y") "dy"/"dx"`
∴ `"b"/"y" "dy"/"dx" - ("a + b")/("x + y") "dy"/"dx" = ("a + b")/("x + y") - "a"/"x"`
∴ `("b"/"y" - ("a + b")/("x + y")) "dy"/"dx" = ("a + b")/("x + y") - "a"/"x"`
∴ `[("bx" + "by" - "a""y" - "by")/("y"("x + y"))] "dy"/"dx" = ("ax" + "bx" - "ax" - "ay")/("x"("x + y"))`
∴ `[("bx" - "ay")/("y"("x + y"))] "dy"/"dx" = ("bx" - "ay")/("x"("x + y"))`
∴ `"dy"/"dx" = ("bx" - "ay")/("x"("x + y")) xx ("y"("x + y"))/("bx" - "ay")`
∴ `"dy"/"dx" = "y"/"x"`
APPEARS IN
संबंधित प्रश्न
If for the function
\[\Phi \left( x \right) = \lambda x^2 + 7x - 4, \Phi'\left( 5 \right) = 97, \text { find } \lambda .\]
Find `dy/dx if x^3 + y^2 + xy = 7`
Find `(dy)/(dx) , "If" x^3 + y^2 + xy = 10`
If x = tan-1t and y = t3 , find `(dy)/(dx)`.
Discuss extreme values of the function f(x) = x.logx
If ex + ey = ex+y, then show that `"dy"/"dx" = -e^(y - x)`.
Find `"dy"/"dx"` if x = at2, y = 2at.
Find `"dy"/"dx"`, if : `x = cos^-1((2t)/(1 + t^2)), y = sec^-1(sqrt(1 + t^2))`
Find `"dy"/"dx"`, if : `x = cos^-1(4t^3 - 3t), y = tan^-1(sqrt(1 - t^2)/t)`.
Find `"dy"/"dx"` if : x = t2 + t + 1, y = `sin((pit)/2) + cos((pit)/2) "at" t = 1`
Find `"dy"/"dx"` if : x = t + 2sin (πt), y = 3t – cos (πt) at t = `(1)/(2)`
If x = `(t + 1)/(t - 1), y = (t - 1)/(t + 1), "then show that" y^2 + "dy"/"dx"` = 0.
DIfferentiate x sin x w.r.t. tan x.
Differentiate `cos^-1((1 - x^2)/(1 + x^2)) w.r.t. tan^-1 x.`
If x2 + 6xy + y2 = 10, show that `(d^2y)/(dx^2) = (80)/(3x + y)^3`.
Find the nth derivative of the following : (ax + b)m
Find the nth derivative of the following : sin (ax + b)
Choose the correct option from the given alternatives :
If y = sec (tan –1x), then `"dy"/"dx"` at x = 1, is equal to
Choose the correct option from the given alternatives :
If y = sin (2sin–1 x), then dx = ........
Choose the correct option from the given alternatives :
If x = a(cosθ + θ sinθ), y = a(sinθ – θ cosθ), then `((d^2y)/dx^2)_(θ = pi/4)` = .........
Differentiate the following w.r.t. x : `sin[2tan^-1(sqrt((1 - x)/(1 + x)))]`
Differentiate the following w.r.t. x:
`tan^-1(x/(1 + 6x^2)) + cot^-1((1 - 10x^2)/(7x))`
If `sqrt(y + x) + sqrt(y - x)` = c, show that `"dy"/"dx" = y/x - sqrt(y^2/x^2 - 1)`.
DIfferentiate `tan^-1((sqrt(1 + x^2) - 1)/x) w.r.t. tan^-1(sqrt((2xsqrt(1 - x^2))/(1 - 2x^2)))`.
Find `"dy"/"dx"` if, x3 + x2y + xy2 + y3 = 81
Find `"dy"/"dx"` if, xy = log (xy)
Solve the following:
If `"x"^5 * "y"^7 = ("x + y")^12` then show that, `"dy"/"dx" = "y"/"x"`
Choose the correct alternative.
If ax2 + 2hxy + by2 = 0 then `"dy"/"dx" = ?`
Choose the correct alternative.
If `"x"^4."y"^5 = ("x + y")^("m + 1")` then `"dy"/"dx" = "y"/"x"` then m = ?
State whether the following is True or False:
The derivative of `"x"^"m"*"y"^"n" = ("x + y")^("m + n")` is `"x"/"y"`
Find `"dy"/"dx"` if x = `"e"^"3t", "y" = "e"^(sqrt"t")`.
If x2 + y2 = t + `1/"t"` and x4 + y4 = t2 + `1/"t"^2` then `("d"y)/("d"x)` = ______
State whether the following statement is True or False:
If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x) = 1/(2sqrt(x)) + 1/(2sqrt(y)) = 1/(2sqrt("a"))`
`(dy)/(dx)` of `xy + y^2 = tan x + y` is
Find `(dy)/(dx)`, if `y = sin^-1 ((2x)/(1 + x^2))`
Find `(d^2y)/(dy^2)`, if y = e4x
If y = `sqrt(tan x + sqrt(tanx + sqrt(tanx + .... + ∞)`, then show that `dy/dx = (sec^2x)/(2y - 1)`.
Find `dy/dx` at x = 0.
Find `dy/dx if, x= e^(3t), y = e^sqrtt`