मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

If xa⋅yb=(x + y)a + b, then show that dydx=yx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If `"x"^"a"*"y"^"b" = ("x + y")^("a + b")`, then show that `"dy"/"dx" = "y"/"x"`

बेरीज

उत्तर

`"x"^"a"*"y"^"b" = ("x + y")^("a + b")`

Taking logarithm of both sides, we get

log (`"x"^"a"*"y"^"b"`) = log `("x + y")^("a + b")`

∴ log `"x"^"a" + log "y"^"b" = ("a + b") log ("x + y")` 

∴ a log x + b log y = (a + b) log (x + y)

Differentiating both sides w.r.t. x, we get

`"a"(1/"x") + "b"(1/"y") "dy"/"dx" = ("a + b")(1/("x + y")) "d"/"dx" ("x + y")`

∴ `"a"/"x" + "b"/"y" "dy"/"dx" = ("a + b")/("x + y") (1 + "dy"/"dx")`

∴ `"a"/"x" + "b"/"y" "dy"/"dx" = ("a + b")/("x + y") + ("a + b")/("x + y") "dy"/"dx"`

∴ `"b"/"y" "dy"/"dx" - ("a + b")/("x + y") "dy"/"dx" = ("a + b")/("x + y") - "a"/"x"`

∴ `("b"/"y" - ("a + b")/("x + y")) "dy"/"dx" = ("a + b")/("x + y") - "a"/"x"`

∴ `[("bx" + "by" - "a""y" - "by")/("y"("x + y"))] "dy"/"dx" = ("ax" + "bx" - "ax" - "ay")/("x"("x + y"))`

∴ `[("bx" - "ay")/("y"("x + y"))] "dy"/"dx" = ("bx" - "ay")/("x"("x + y"))`

∴ `"dy"/"dx" = ("bx" - "ay")/("x"("x + y")) xx ("y"("x + y"))/("bx" - "ay")`

∴ `"dy"/"dx" = "y"/"x"`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Differentiation - MISCELLANEOUS EXERCISE - 3 [पृष्ठ १००]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Differentiation
MISCELLANEOUS EXERCISE - 3 | Q IV] 14) | पृष्ठ १००

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

If for the function 

\[\Phi \left( x \right) = \lambda x^2 + 7x - 4, \Phi'\left( 5 \right) = 97, \text { find } \lambda .\]


Find `dy/dx if x^3 + y^2 + xy = 7`


Find `(dy)/(dx) , "If"   x^3 + y^2 + xy = 10`


If x = tan-1t and y = t3 , find `(dy)/(dx)`.


Discuss extreme values of the function f(x) = x.logx


If ex + ey = ex+y, then show that `"dy"/"dx" = -e^(y - x)`.


Find `"dy"/"dx"` if x = at2, y = 2at.


Find `"dy"/"dx"`, if : `x = cos^-1((2t)/(1 + t^2)), y = sec^-1(sqrt(1 + t^2))`


Find `"dy"/"dx"`, if : `x = cos^-1(4t^3 - 3t), y = tan^-1(sqrt(1 - t^2)/t)`.


Find `"dy"/"dx"` if : x = t2 + t + 1, y = `sin((pit)/2) + cos((pit)/2) "at"  t = 1`


Find `"dy"/"dx"` if : x = t + 2sin (πt), y = 3t – cos (πt) at t = `(1)/(2)`


If x = `(t + 1)/(t - 1), y = (t - 1)/(t + 1), "then show that"  y^2 + "dy"/"dx"` = 0.


DIfferentiate x sin x w.r.t. tan x.


Differentiate `cos^-1((1 - x^2)/(1 + x^2)) w.r.t. tan^-1 x.`


If x2 + 6xy + y2 = 10, show that `(d^2y)/(dx^2) = (80)/(3x + y)^3`.


Find the nth derivative of the following : (ax + b)m 


Find the nth derivative of the following : sin (ax + b)


Choose the correct option from the given alternatives :

If y = sec (tan –1x), then `"dy"/"dx"` at x = 1, is equal to


Choose the correct option from the given alternatives :

If y = sin (2sin–1 x), then dx = ........


Choose the correct option from the given alternatives :

If x = a(cosθ + θ sinθ), y = a(sinθ – θ cosθ), then `((d^2y)/dx^2)_(θ = pi/4)` = .........


Differentiate the following w.r.t. x : `sin[2tan^-1(sqrt((1 - x)/(1 + x)))]`


Differentiate the following w.r.t. x:

`tan^-1(x/(1 + 6x^2)) + cot^-1((1 - 10x^2)/(7x))`


If `sqrt(y + x) + sqrt(y - x)` = c, show that `"dy"/"dx" = y/x - sqrt(y^2/x^2 - 1)`.


DIfferentiate `tan^-1((sqrt(1 + x^2) - 1)/x) w.r.t. tan^-1(sqrt((2xsqrt(1 - x^2))/(1 - 2x^2)))`.


Find `"dy"/"dx"` if, x3 + x2y + xy2 + y3 = 81


Find `"dy"/"dx"` if, xy = log (xy)


Solve the following:

If `"x"^5 * "y"^7 = ("x + y")^12` then show that, `"dy"/"dx" = "y"/"x"`


Choose the correct alternative.

If ax2 + 2hxy + by2 = 0 then `"dy"/"dx" = ?` 


Choose the correct alternative.

If `"x"^4."y"^5 = ("x + y")^("m + 1")` then `"dy"/"dx" = "y"/"x"` then m = ?


State whether the following is True or False:

The derivative of `"x"^"m"*"y"^"n" = ("x + y")^("m + n")` is `"x"/"y"`


Find `"dy"/"dx"` if x = `"e"^"3t",  "y" = "e"^(sqrt"t")`.


If x2 + y2 = t + `1/"t"` and x4 + y4 = t2 + `1/"t"^2` then `("d"y)/("d"x)` = ______


State whether the following statement is True or False:

If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x) = 1/(2sqrt(x)) + 1/(2sqrt(y)) = 1/(2sqrt("a"))`


`(dy)/(dx)` of `xy + y^2 = tan x + y` is


Find `(dy)/(dx)`, if `y = sin^-1 ((2x)/(1 + x^2))`


Find `(d^2y)/(dy^2)`, if y = e4x


If y = `sqrt(tan x + sqrt(tanx + sqrt(tanx + .... +  ∞)`, then show that `dy/dx = (sec^2x)/(2y - 1)`.

Find `dy/dx` at x = 0.


Find `dy/dx if, x= e^(3t), y = e^sqrtt`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×