मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Find dydxdydx if : x = t2 + t + 1, y = atsin(πt2)+cos(πt2)at t=1 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find `"dy"/"dx"` if : x = t2 + t + 1, y = `sin((pit)/2) + cos((pit)/2) "at"  t = 1`

बेरीज

उत्तर

x = t2 + t + 1, y = `sin((pit)/2) + cos((pit)/2)`
Differentiating x and y w.r.t. t, we get
`"dx"/"dt" = "d"/"dt"(t^2 + t + 1)`
= 2t + 1 + 0 = 2t + 1
and
`"dy"/"dt" = "d"/"dt"[sin(pit/2)] + "d"/"dt"[cos(pi/t)]`

= `cos((pit)/2)."d"/"dt"((pit)/2) + [-sin((pit)/2)]."d"/"dt"((pit)/2)`

= `cos((pit)/2) xx pi/(2) xx 1 - sin ((pit)/2) xx pi/(2) xx 1`

= `pi/(2)[cos((pit)/2) - sin((pit)/2)]`

∴ `"dy"/"dx" = (("dy"/"dt"))/(("dx"/"dt")`

= `(pi/(2)[cos((pit)/2) - sin((pit)/2)])/(2t + 1)`

∴ `(dx/dy)_("at"  t = 1)`

= `(pi/(2)[cos  pi/2 - sin  pi/2])/(2(1) + 1)`

= `(pi/(2)(0 - 1))/(3)`

= `- pi/(6)`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Differentiation - Exercise 1.4 [पृष्ठ ४८]

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

If y=eax ,show that  `xdy/dx=ylogy`


Find dy/dx if x sin y + y sin x = 0.


Find  `dy/dx` in the following:

2x + 3y = sin x


Find `dy/dx` in the following:

2x + 3y = sin y


Find `dy/dx` in the following:

sin2 x + cos2 y = 1


Find the derivative of the function f defined by f (x) = mx + c at x = 0.


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


Find `dy/dx if x^3 + y^2 + xy = 7`


Find `"dy"/"dx"` ; if y = cos-1 `("2x" sqrt (1 - "x"^2))`


Differentiate tan-1 (cot 2x) w.r.t.x.


If x = tan-1t and y = t3 , find `(dy)/(dx)`.


Discuss extreme values of the function f(x) = x.logx


Find `"dy"/"dx"` if x = a cot θ, y = b cosec θ


Find `"dy"/"dx"`, if : x = `sqrt(a^2 + m^2), y = log(a^2 + m^2)`


Find `"dy"/"dx"`, if : x = sinθ, y = tanθ


Find `"dy"/"dx"`, if : x = `(t + 1/t)^a, y = a^(t+1/t)`, where a > 0, a ≠ 1, t ≠ 0.


Find `"dy"/"dx"`, if : `x = cos^-1((2t)/(1 + t^2)), y = sec^-1(sqrt(1 + t^2))`


Find `"dy"/"dx"` if : x = a cos3θ, y = a sin3θ at θ = `pi/(3)`


Differentiate `tan^-1((x)/(sqrt(1 - x^2))) w.r.t. sec^-1((1)/(2x^2 - 1))`.


Differentiate xx w.r.t. xsix.


Find `(d^2y)/(dx^2)` of the following : x = sinθ, y = sin3θ at θ = `pi/(2)`


Find `(d^2y)/(dx^2)` of the following : x = a cos θ, y = b sin θ at θ = `π/4`.


If x = at2 and y = 2at, then show that `xy(d^2y)/(dx^2) + a` = 0.


If y = x + tan x, show that `cos^2x.(d^2y)/(dx^2) - 2y + 2x` = 0.


Find the nth derivative of the following:

`(1)/x`


Find the nth derivative of the following : cos (3 – 2x)


Choose the correct option from the given alternatives : 

Let `f(1) = 3, f'(1) = -(1)/(3), g(1) = -4 and g'(1) =-(8)/(3).` The derivative of `sqrt([f(x)]^2 + [g(x)]^2` w.r.t. x at x = 1 is 


Choose the correct option from the given alternatives :

If f(x) = `sin^-1((4^(x + 1/2))/(1 + 2^(4x)))`, which of the following is not the derivative of f(x)?


Choose the correct option from the given alternatives :

If x = a(cosθ + θ sinθ), y = a(sinθ – θ cosθ), then `((d^2y)/dx^2)_(θ = pi/4)` = .........


Choose the correct option from the given alternatives :

If y = `a cos (logx) and "A"(d^2y)/(dx^2) + "B""dy"/"dx" + "C"` = 0, then the values of A, B, C are


Solve the following : 

f(x) = –x, for – 2 ≤ x < 0
= 2x, for 0 ≤ x < 2
= `(18 - x)/(4)`, for 2 < x ≤ 7
g(x) = 6 – 3x, for 0 ≤ x < 2
= `(2x - 4)/(3)`, for 2 < x ≤ 7
Let u (x) = f[g(x)], v(x) = g[f(x)] and w(x) = g[g(x)]. Find each derivative at x = 1, if it exists i.e. find u'(1), v' (1) and w'(1). If it doesn't exist, then explain why?


Differentiate the following w.r.t. x : `sin[2tan^-1(sqrt((1 - x)/(1 + x)))]`


Differentiate the following w.r.t. x : `tan^-1((sqrt(x)(3 - x))/(1 - 3x))`


Differentiate the following w.r.t. x:

`tan^-1(x/(1 + 6x^2)) + cot^-1((1 - 10x^2)/(7x))`


Differentiate the following w.r.t. x : `tan^-1[sqrt((sqrt(1 + x^2) + x)/(sqrt(1 + x^2) - x))]`


If `sqrt(y + x) + sqrt(y - x)` = c, show that `"dy"/"dx" = y/x - sqrt(y^2/x^2 - 1)`.


If `xsqrt(1 - y^2) + ysqrt(1 - x^2)` = 1, then show that `"dy"/"dx" = -sqrt((1 - y^2)/(1 - x^2)`.


If x sin (a + y) + sin a . cos (a + y) = 0, then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.


DIfferentiate `tan^-1((sqrt(1 + x^2) - 1)/x) w.r.t. tan^-1(sqrt((2xsqrt(1 - x^2))/(1 - 2x^2)))`.


If y2 = a2cos2x + b2sin2x, show that `y + (d^2y)/(dx^2) = (a^2b^2)/y^3`


Find `"dy"/"dx" if, sqrt"x" + sqrt"y" = sqrt"a"`


Find `"dy"/"dx"` if, x3 + y3 + 4x3y = 0 


Find `"dy"/"dx"` if, x3 + x2y + xy2 + y3 = 81


Find `"dy"/"dx"` if, `"x"^"y" = "e"^("x - y")`


If `"x"^7*"y"^9 = ("x + y")^16`, then show that `"dy"/"dx" = "y"/"x"`


If `"x"^"a"*"y"^"b" = ("x + y")^("a + b")`, then show that `"dy"/"dx" = "y"/"x"`


If x = sin θ, y = tan θ, then find `("d"y)/("d"x)`.


If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x)` is ______


`(dy)/(dx)` of `2x + 3y = sin x` is:-


`(dy)/(dx)` of `xy + y^2 = tan x + y` is


If y = `e^(m tan^-1x)` then show that `(1 + x^2) (d^2y)/(dx^2) + (2x - m) (dy)/(dx)` = 0


If y = y(x) is an implicit function of x such that loge(x + y) = 4xy, then `(d^2y)/(dx^2)` at x = 0 is equal to ______.


If 2x + 2y = 2x+y, then `(dy)/(dx)` is equal to ______.


Find `dy/dx if, x= e^(3t), y = e^sqrtt`


Find `dy/dx` if , x = `e^(3t), y = e^(sqrtt)`


Find `dy/dx if , x = e^(3t) , y = e^sqrtt`


Find `dy / dx` if, x = `e^(3t), y = e^sqrt t` 


Find `dy/dx` if, x = e3t, y = `e^sqrtt`


If log(x + y) = log(xy) + a then show that, `dy/dx = (−y^2)/x^2`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×