मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Find dydxdydx if : x = a cos3θ, y = a sin3θ at θ = π3 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find `"dy"/"dx"` if : x = a cos3θ, y = a sin3θ at θ = `pi/(3)`

बेरीज

उत्तर

a cos3θ, y = a sin3θ
Differentiating x and y w.r.t. θ, we get
`"dx"/"dθ" = a"d"/"dθ"(cosθ)^3`

= `a xx 3cos^2θ."d"/"dθ"(cosθ)`
= 3a cos2θ(– sinθ)
= – 3a cos2θ sinθ
and
`"dy"/"dθ" = a"d"/"dθ"(sinθ)^3`

= `a xx 3 sin^2θ."d"/"dθ"(sinθ)`
= 3a sin2θ cosθ
∴`"dy"/"dx" = (("dy"/"dθ"))/(("dx"/"dθ")`

= `(3a sin^2θ cosθ)/(-3a cos^2θ sinθ)`

= – tanθ

∴ `(dx/dy)_("at"  θ - pi/3)`

= `-tan  pi/(3)`
= `-sqrt(3)`   

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Differentiation - Exercise 1.4 [पृष्ठ ४८]

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

If y=eax ,show that  `xdy/dx=ylogy`


If xpyq = (x + y)p+q then Prove that `dy/dx = y/x`


Find `dy/dx` in the following:

2x + 3y = sin y


Find `dx/dy` in the following.

x2 + xy + y2 = 100


Find `dy/dx` in the following.

x3 + x2y + xy2 + y3 = 81


If for the function 

\[\Phi \left( x \right) = \lambda x^2 + 7x - 4, \Phi'\left( 5 \right) = 97, \text { find } \lambda .\]


If  \[f\left( x \right) = x^3 + 7 x^2 + 8x - 9\] 

, find f'(4).


If  \[\lim_{x \to c} \frac{f\left( x \right) - f\left( c \right)}{x - c}\]  exists finitely, write the value of  \[\lim_{x \to c} f\left( x \right)\]


Let \[f\left( x \right)\begin{cases}a x^2 + 1, & x > 1 \\ x + 1/2, & x \leq 1\end{cases}\] . Then, f (x) is derivable at x = 1, if 


Find `dy/dx if x^3 + y^2 + xy = 7`


Find `"dy"/"dx"` ; if x = sin3θ , y = cos3θ


Find `"dy"/"dx"` ; if y = cos-1 `("2x" sqrt (1 - "x"^2))`


Find `(dy)/(dx) , "If"   x^3 + y^2 + xy = 10`


Find `"dy"/"dx"` if x = at2, y = 2at.


Find `"dy"/"dx"`, if : x = sinθ, y = tanθ


Find `"dy"/"dx"`, if : x = a(1 – cosθ), y = b(θ – sinθ)


Find `"dy"/"dx"` if : x = cosec2θ, y = cot3θ at θ= `pi/(6)`


Find `"dy"/"dx"` if : x = t2 + t + 1, y = `sin((pit)/2) + cos((pit)/2) "at"  t = 1`


Find `dy/dx` if : x = 2 cos t + cos 2t, y = 2 sin t – sin 2t at t = `pi/(4)`


DIfferentiate x sin x w.r.t. tan x.


Differentiate `sin^-1((2x)/(1 + x^2))w.r.t. cos^-1((1 - x^2)/(1 + x^2))`


Differentiate `tan^-1((cosx)/(1 + sinx)) w.r.t. sec^-1 x.`


Differentiate xx w.r.t. xsix.


If x = at2 and y = 2at, then show that `xy(d^2y)/(dx^2) + a` = 0.


If y = `e^(mtan^-1x)`, show that `(1 + x^2)(d^2y)/(dx^2) + (2x - m)"dy"/"dx"` = 0.


If `sec^-1((7x^3 - 5y^3)/(7^3 + 5y^3)) = "m", "show"  (d^2y)/(dx^2)` = 0.


If y = sin (m cos–1x), then show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" + m^2y` = 0.


If x = a sin t – b cos t, y = a cos t + b sin t, show that `(d^2y)/(dx^2) = -(x^2 + y^2)/(y^3)`.


Find the nth derivative of the following : eax+b 


Find the nth derivative of the following : apx+q 


Find the nth derivative of the following : sin (ax + b)


Find the nth derivative of the following : `(1)/(3x - 5)`


Choose the correct option from the given alternatives :

If y = sin (2sin–1 x), then dx = ........


Choose the correct option from the given alternatives :

If y = `tan^-1(x/(1 + sqrt(1 - x^2))) + sin[2tan^-1(sqrt((1 - x)/(1 + x)))] "then" "dy"/"dx"` = ...........


Differentiate the following w.r.t. x : `sin[2tan^-1(sqrt((1 - x)/(1 + x)))]`


Differentiate the following w.r.t. x : `cos^-1((sqrt(1 + x) - sqrt(1 - x))/2)`


If `xsqrt(1 - y^2) + ysqrt(1 - x^2)` = 1, then show that `"dy"/"dx" = -sqrt((1 - y^2)/(1 - x^2)`.


If `x = e^(x/y)`, then show that `"dy"/"dx" = (x - y)/(xlogx)`


DIfferentiate `tan^-1((sqrt(1 + x^2) - 1)/x) w.r.t. tan^-1(sqrt((2xsqrt(1 - x^2))/(1 - 2x^2)))`.


Differentiate log `[(sqrt(1 + x^2) + x)/(sqrt(1 + x^2 - x)]]` w.r.t. cos (log x).


Differentiate `tan^-1((sqrt(1 + x^2) - 1)/x)` w.r.t. `cos^-1(sqrt((1 + sqrt(1 + x^2))/(2sqrt(1 + x^2))))`


If y2 = a2cos2x + b2sin2x, show that `y + (d^2y)/(dx^2) = (a^2b^2)/y^3`


If log y = log (sin x) – x2, show that `(d^2y)/(dx^2) + 4x "dy"/"dx" + (4x^2 + 3)y` = 0.


Find `"dy"/"dx"` if, x3 + y3 + 4x3y = 0 


Find `"dy"/"dx"` if, `"x"^"y" = "e"^("x - y")`


Solve the following:

If `"x"^5 * "y"^7 = ("x + y")^12` then show that, `"dy"/"dx" = "y"/"x"`


If log (x + y) = log (xy) + a then show that, `"dy"/"dx" = (- "y"^2)/"x"^2`.


Solve the following:

If `"e"^"x" + "e"^"y" = "e"^((x + y))` then show that, `"dy"/"dx" = - "e"^"y - x"`.


Choose the correct alternative.

If y = 5x . x5, then `"dy"/"dx" = ?` 


Choose the correct alternative.

If ax2 + 2hxy + by2 = 0 then `"dy"/"dx" = ?` 


If x = a t4 y = 2a t2 then `("d"y)/("d"x)` = ______


State whether the following statement is True or False:

If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x) = 1/(2sqrt(x)) + 1/(2sqrt(y)) = 1/(2sqrt("a"))`


`(dy)/(dx)` of `2x + 3y = sin x` is:-


Find `(dy)/(dx)`, if `y = sin^-1 ((2x)/(1 + x^2))`


y = `e^(x3)`


Find `(d^2y)/(dy^2)`, if y = e4x


If y = y(x) is an implicit function of x such that loge(x + y) = 4xy, then `(d^2y)/(dx^2)` at x = 0 is equal to ______.


If 2x + 2y = 2x+y, then `(dy)/(dx)` is equal to ______.


If `tan ((x + y)/(x - y))` = k, then `dy/dx` is equal to ______.


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


If log (x + y) = log (xy) + a then show that, `dy/dx = (−y^2)/x^ 2`


Find `dy/dx` if, x = e3t, y = `e^sqrtt`


Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`


If log(x + y) = log(xy) + a, then show that `dy/dx = (-y^2)/x^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×