Advertisements
Advertisements
प्रश्न
Solve the following:
If `"x"^5 * "y"^7 = ("x + y")^12` then show that, `"dy"/"dx" = "y"/"x"`
उत्तर
`"x"^5 * "y"^7 = ("x + y")^12`
Taking logarithm of both sides, we get
`log ("x"^5 * "y"^7) = log ("x + y")^12`
∴ log x5 + log y7 = 12 log (x + y)
∴ 5 log x + 7 log y = 12 log (x + y)
Differentiating both sides w.r.t. x, we get
`5. 1/"x" + 7. 1/"y" * "dy"/"dx" = 12 * 1/("x + y") * "d"/"dx" ("x + y")`
∴ `5/"x" + 7/"y" * "dy"/"dx" = 12/("x + y") [1 + "dy"/"dx"]`
∴ `5/"x" + 7/"y" * "dy"/"dx" = 12/("x + y") + 12/("x + y") * "dy"/"dx"`
∴ `[7/"y" - 12/("x + y")] "dy"/"dx" = 12/("x + y") - 5/"x"`
∴ `[(7"x" + 7"y" - 12"y")/("y" ("x + y"))] "dy"/"dx" = (12"x" - 5"x" - 5"y")/("x"("x + y"))`
∴ `[("7x" - 5"y")/("y"("x + y"))] "dy"/"dx" = [("7x" - 5"y")/("x"("x + y"))]`
∴ `"dy"/"dx" = [("7x" - 5"y")/("x"("x + y"))] xx ("y"("x + y"))/("7x" - 5"y")`
∴ `"dy"/"dx" = "y"/"x"`
APPEARS IN
संबंधित प्रश्न
Find `dy/dx` in the following:
ax + by2 = cos y
Find `dy/dx` in the following:
xy + y2 = tan x + y
Find `dx/dy` in the following.
x2 + xy + y2 = 100
Find `dy/dx` in the following:
`y = sin^(-1)((2x)/(1+x^2))`
if `x^y + y^x = a^b`then Find `dy/dx`
if `(x^2 + y^2)^2 = xy` find `(dy)/(dx)`
Find the derivative of the function f defined by f (x) = mx + c at x = 0.
Examine the differentialibilty of the function f defined by
\[f\left( x \right) = \begin{cases}2x + 3 & \text { if }- 3 \leq x \leq - 2 \\ \begin{array}xx + 1 \\ x + 2\end{array} & \begin{array} i\text { if } - 2 \leq x < 0 \\\text { if } 0 \leq x \leq 1\end{array}\end{cases}\]
Write the derivative of f (x) = |x|3 at x = 0.
Find `dy/dx if x^3 + y^2 + xy = 7`
Find `(dy)/(dx)` if `y = sin^-1(sqrt(1-x^2))`
Differentiate tan-1 (cot 2x) w.r.t.x.
Discuss extreme values of the function f(x) = x.logx
Find `"dy"/"dx"`, if : x = `(t + 1/t)^a, y = a^(t+1/t)`, where a > 0, a ≠ 1, t ≠ 0.
Find `"dy"/"dx"`, if : `x = cos^-1(4t^3 - 3t), y = tan^-1(sqrt(1 - t^2)/t)`.
Find `"dy"/"dx"` if : x = a cos3θ, y = a sin3θ at θ = `pi/(3)`
Find `"dy"/"dx"` if : x = t + 2sin (πt), y = 3t – cos (πt) at t = `(1)/(2)`
DIfferentiate x sin x w.r.t. tan x.
Differentiate `sin^-1((2x)/(1 + x^2))w.r.t. cos^-1((1 - x^2)/(1 + x^2))`
Differentiate xx w.r.t. xsix.
If y = `e^(mtan^-1x)`, show that `(1 + x^2)(d^2y)/(dx^2) + (2x - m)"dy"/"dx"` = 0.
Find the nth derivative of the following : cos x
Find the nth derivative of the following : `(1)/(3x - 5)`
Find the nth derivative of the following : y = eax . cos (bx + c)
Choose the correct option from the given alternatives :
If y = `tan^-1(x/(1 + sqrt(1 - x^2))) + sin[2tan^-1(sqrt((1 - x)/(1 + x)))] "then" "dy"/"dx"` = ...........
Choose the correct option from the given alternatives :
If `xsqrt(y + 1) + ysqrt(x + 1) = 0 and x ≠ y, "then" "dy"/"dx"` = ........
If y `tan^-1(sqrt((a - x)/(a + x)))`, where – a < x < a, then `"dy"/"dx"` = .........
Choose the correct option from the given alternatives :
If y = `a cos (logx) and "A"(d^2y)/(dx^2) + "B""dy"/"dx" + "C"` = 0, then the values of A, B, C are
Differentiate the following w.r.t. x : `tan^-1((sqrt(x)(3 - x))/(1 - 3x))`
Differentiate the following w.r.t. x:
`tan^-1(x/(1 + 6x^2)) + cot^-1((1 - 10x^2)/(7x))`
Differentiate the following w.r.t. x : `tan^-1[sqrt((sqrt(1 + x^2) + x)/(sqrt(1 + x^2) - x))]`
DIfferentiate `tan^-1((sqrt(1 + x^2) - 1)/x) w.r.t. tan^-1(sqrt((2xsqrt(1 - x^2))/(1 - 2x^2)))`.
If y2 = a2cos2x + b2sin2x, show that `y + (d^2y)/(dx^2) = (a^2b^2)/y^3`
Find `"dy"/"dx" if, sqrt"x" + sqrt"y" = sqrt"a"`
Find `"dy"/"dx"` if, xy = log (xy)
If log (x + y) = log (xy) + a then show that, `"dy"/"dx" = (- "y"^2)/"x"^2`.
Choose the correct alternative.
If `"x"^4."y"^5 = ("x + y")^("m + 1")` then `"dy"/"dx" = "y"/"x"` then m = ?
Choose the correct alternative.
If x = `("e"^"t" + "e"^-"t")/2, "y" = ("e"^"t" - "e"^-"t")/2` then `"dy"/"dx"` = ?
If `"x"^7*"y"^9 = ("x + y")^16`, then show that `"dy"/"dx" = "y"/"x"`
If x = a t4 y = 2a t2 then `("d"y)/("d"x)` = ______
If x = sin θ, y = tan θ, then find `("d"y)/("d"x)`.
If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x)` is ______
`(dy)/(dx)` of `xy + y^2 = tan x + y` is
y = `e^(x3)`
`"If" log(x+y) = log(xy)+a "then show that", dy/dx=(-y^2)/x^2`
If log(x+y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Solve the following.
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Find `dy/dx` if, x = e3t, y = `e^sqrtt`
Find `dy/dx"if", x= e^(3t), y=e^sqrtt`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`