Advertisements
Advertisements
प्रश्न
if `(x^2 + y^2)^2 = xy` find `(dy)/(dx)`
उत्तर
We have `(x^2 + y^2) = xy`
Differentiating with respect to x, we get
`=> d/dx [(x^2 + y^2)^2] = d/dx (xy)`
`=> 2(x^2 + y^2) d/(dx) (x^2 + y^2) = x (dy)/(dx) + y d/dx (x)`
`=> 2(x^2 + y^2) (2x+ 2y dy/dx) = x (dy/dx) + y (1)`
`=> 4x (x^2 + y^2) + 4y (x^2 + y^2) dy/dx = x dy/dx + y`
`=> 4y(x^2 + y^2) dy/dx - x dy/dx = y - 4x (x^2 + y^2)`
`=> dy/dx [4y(x^2 + y^2) - x] = y - 4x(x^2 + y^2)`
`=> dy/dx = (y - 4x(x^2+y^2))/(4y(x^2 + y^2) - x)`
`=> dy/dx = (4x(x^2 + y^2)-y)/(x-4y(x^2 + y^2))`
APPEARS IN
संबंधित प्रश्न
Find `dy/dx` in the following:
2x + 3y = sin y
Find `dx/dy` in the following.
x2 + xy + y2 = 100
Find `dy/dx` in the following.
x3 + x2y + xy2 + y3 = 81
Find `dy/dx` in the following:
sin2 y + cos xy = k
Find the derivative of the function f defined by f (x) = mx + c at x = 0.
Differentiate e4x + 5 w.r..t.e3x
Find `(dy)/(dx) if y = cos^-1 (√x)`
If x = `(t + 1)/(t - 1), y = (t - 1)/(t + 1), "then show that" y^2 + "dy"/"dx"` = 0.
Find `(d^2y)/(dx^2)` of the following : x = a(θ – sin θ), y = a(1 – cos θ)
If y = `e^(mtan^-1x)`, show that `(1 + x^2)(d^2y)/(dx^2) + (2x - m)"dy"/"dx"` = 0.
If y = eax.sin(bx), show that y2 – 2ay1 + (a2 + b2)y = 0.
Find the nth derivative of the following : eax+b
Find the nth derivative of the following : sin (ax + b)
Solve the following :
f(x) = –x, for – 2 ≤ x < 0
= 2x, for 0 ≤ x < 2
= `(18 - x)/(4)`, for 2 < x ≤ 7
g(x) = 6 – 3x, for 0 ≤ x < 2
= `(2x - 4)/(3)`, for 2 < x ≤ 7
Let u (x) = f[g(x)], v(x) = g[f(x)] and w(x) = g[g(x)]. Find each derivative at x = 1, if it exists i.e. find u'(1), v' (1) and w'(1). If it doesn't exist, then explain why?
Differentiate the following w.r.t. x : `tan^-1((sqrt(x)(3 - x))/(1 - 3x))`
If sin y = x sin (a + y), then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.
Differentiate log `[(sqrt(1 + x^2) + x)/(sqrt(1 + x^2 - x)]]` w.r.t. cos (log x).
If y = Aemx + Benx, show that y2 – (m + n)y1 + mny = 0.
Find `"dy"/"dx"` if, x3 + y3 + 4x3y = 0
Choose the correct alternative.
If y = 5x . x5, then `"dy"/"dx" = ?`
y = `e^(x3)`
If 2x + 2y = 2x+y, then `(dy)/(dx)` is equal to ______.
`"If" log(x+y) = log(xy)+a "then show that", dy/dx=(-y^2)/x^2`
If log(x+y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Solve the following.
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`