मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

If y = Aemx + Benx, show that y2 – (m + n)y1 + mny = 0. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If y = Aemx + Benx, show that y2 – (m + n)y1 + mny = 0.

बेरीज

उत्तर

y = Aemx + Benx 
Differentiating w.r.t. x, we get

`"dy"/"dx" = "A""d"/"dx"(e^(mx)) + "B""d"/"dx"(e^(nx))`

= `"Ae"^(mx)."d"/"dx"(mx) + "Be"^(nx)."d"/"dx"(nx)`

= Aemx . m + Benx . n
= y1 = mAemx + nBenx                    ...(1)
Differentiating again w.r.t. x, we get

y2 = `m"A""d"/"dx"(e^(mx)) + n"B""d"/"dx"(e^(nx))`

 = `m"Ae"^(mx)."d"/"dx"(mx) + n"Be"^(nx)."d"/"dx"(nx)`

= mAemx . m + nBenx . n

∴ y2 = m2Aemx + n2Benx                   ...(2)
∴ y2 – (m + n)y1 + mny = (m2Aemx + n2Benx) – (m + n)(mAemx + nBenx) + mn(Aemx + Benx)                           ...[By (1), (2)]

= m2Aemx + n2Benx – m2Aemx – mnBemx – n2Benx + mnAemx + mnBenx

= 0
∴ y2 – (m + n)y1 + mny = 0

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Differentiation - Miscellaneous Exercise 1 (II) [पृष्ठ ६४]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 1 Differentiation
Miscellaneous Exercise 1 (II) | Q 7.5 | पृष्ठ ६४

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find dy/dx if x sin y + y sin x = 0.


Find  `dy/dx` in the following:

2x + 3y = sin x


Find `dy/dx` in the following:

xy + y2 = tan x + y


Show that the derivative of the function f given by 

\[f\left( x \right) = 2 x^3 - 9 x^2 + 12x + 9\], at x = 1 and x = 2 are equal.

If for the function 

\[\Phi \left( x \right) = \lambda x^2 + 7x - 4, \Phi'\left( 5 \right) = 97, \text { find } \lambda .\]


If f (x) = |x − 2| write whether f' (2) exists or not.


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


Let \[f\left( x \right)\begin{cases}a x^2 + 1, & x > 1 \\ x + 1/2, & x \leq 1\end{cases}\] . Then, f (x) is derivable at x = 1, if 


Find `dy/dx if x^3 + y^2 + xy = 7`


Find `"dy"/"dx"` ; if x = sin3θ , y = cos3θ


Differentiate e4x + 5 w.r..t.e3x


Find `(dy)/(dx) if y = cos^-1 (√x)`


Find `(dy)/(dx)` if `y = sin^-1(sqrt(1-x^2))`


If `sin^-1((x^5 - y^5)/(x^5 + y^5)) = pi/(6), "show that" "dy"/"dx" = x^4/(3y^4)`


If y = `sqrt(cosx + sqrt(cosx + sqrt(cosx + ... ∞)`, then show that `"dy"/"dx" = sinx/(1 - 2y)`.


Find `"dy"/"dx"` if x = at2, y = 2at.


Find `"dy"/"dx"` if x = a cot θ, y = b cosec θ


Find `"dy"/"dx"`, if : x = `sqrt(a^2 + m^2), y = log(a^2 + m^2)`


Find `"dy"/"dx"`, if : `x = cos^-1(4t^3 - 3t), y = tan^-1(sqrt(1 - t^2)/t)`.


Differentiate `sin^-1((2x)/(1 + x^2))w.r.t. cos^-1((1 - x^2)/(1 + x^2))`


Differentiate `tan^-1((cosx)/(1 + sinx)) w.r.t. sec^-1 x.`


If x = at2 and y = 2at, then show that `xy(d^2y)/(dx^2) + a` = 0.


If x = cos t, y = emt, show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" - m^2y` = 0.


If y = x + tan x, show that `cos^2x.(d^2y)/(dx^2) - 2y + 2x` = 0.


If 2y = `sqrt(x + 1) + sqrt(x - 1)`, show that 4(x2 – 1)y2 + 4xy1 – y = 0.


Find the nth derivative of the following : (ax + b)m 


Find the nth derivative of the following : apx+q 


Find the nth derivative of the following : cos x


Find the nth derivative of the following : `(1)/(3x - 5)`


Choose the correct option from the given alternatives :

If y = sec (tan –1x), then `"dy"/"dx"` at x = 1, is equal to


Choose the correct option from the given alternatives :

If f(x) = `sin^-1((4^(x + 1/2))/(1 + 2^(4x)))`, which of the following is not the derivative of f(x)?


Choose the correct option from the given alternatives :

If y = sin (2sin–1 x), then dx = ........


Choose the correct option from the given alternatives :

If x = a(cosθ + θ sinθ), y = a(sinθ – θ cosθ), then `((d^2y)/dx^2)_(θ = pi/4)` = .........


Choose the correct option from the given alternatives :

If y = `a cos (logx) and "A"(d^2y)/(dx^2) + "B""dy"/"dx" + "C"` = 0, then the values of A, B, C are


Solve the following : 

f(x) = –x, for – 2 ≤ x < 0
= 2x, for 0 ≤ x < 2
= `(18 - x)/(4)`, for 2 < x ≤ 7
g(x) = 6 – 3x, for 0 ≤ x < 2
= `(2x - 4)/(3)`, for 2 < x ≤ 7
Let u (x) = f[g(x)], v(x) = g[f(x)] and w(x) = g[g(x)]. Find each derivative at x = 1, if it exists i.e. find u'(1), v' (1) and w'(1). If it doesn't exist, then explain why?


Suppose that the functions f and g and their derivatives with respect to x have the following values at x = 0 and x = 1: 

x f(x) g(x) f')x) g'(x)
0 1   5 `(1)/(3)`
1 3 – 4 `-(1)/(3)` `-(8)/(3)`

(i) The derivative of f[g(x)] w.r.t. x at x = 0 is ......
(ii) The derivative of g[f(x)] w.r.t. x at x = 0 is ......
(iii) The value of `["d"/"dx"[x^(10) + f(x)]^(-2)]_(x = 1_` is ........
(iv) The derivative of f[(x + g(x))] w.r.t. x at x = 0 is ...


Differentiate the following w.r.t. x : `sin^2[cot^-1(sqrt((1 + x)/(1 - x)))]`


Differentiate the following w.r.t. x : `cos^-1((sqrt(1 + x) - sqrt(1 - x))/2)`


Differentiate the following w.r.t. x:

`tan^-1(x/(1 + 6x^2)) + cot^-1((1 - 10x^2)/(7x))`


If `sqrt(y + x) + sqrt(y - x)` = c, show that `"dy"/"dx" = y/x - sqrt(y^2/x^2 - 1)`.


If `xsqrt(1 - y^2) + ysqrt(1 - x^2)` = 1, then show that `"dy"/"dx" = -sqrt((1 - y^2)/(1 - x^2)`.


If x sin (a + y) + sin a . cos (a + y) = 0, then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.


If sin y = x sin (a + y), then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.


Differentiate log `[(sqrt(1 + x^2) + x)/(sqrt(1 + x^2 - x)]]` w.r.t. cos (log x).


Find `"dy"/"dx"` if, yex + xey = 1 


Choose the correct alternative.

If y = 5x . x5, then `"dy"/"dx" = ?` 


If `"x"^"a"*"y"^"b" = ("x + y")^("a + b")`, then show that `"dy"/"dx" = "y"/"x"`


If x = a t4 y = 2a t2 then `("d"y)/("d"x)` = ______


If y = `sqrt(tansqrt(x)`, find `("d"y)/("d"x)`.


Differentiate w.r.t x (over no. 24 and 25) `e^x/sin x`


y = `e^(x3)`


If y = `e^(m tan^-1x)` then show that `(1 + x^2) (d^2y)/(dx^2) + (2x - m) (dy)/(dx)` = 0


Find `(dy)/(dx)` if x + sin(x + y) = y – cos(x – y)


Find `(d^2y)/(dy^2)`, if y = e4x


Find `dy/dx if, x= e^(3t), y = e^sqrtt`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


If log (x + y) = log (xy) + a then show that, `dy/dx = (−y^2)/x^ 2`


Find `dy/dx if , x = e^(3t) , y = e^sqrtt`


Solve the following.

If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


If log(x + y) = log(xy) + a then show that, `dy/dx=(-y^2)/x^2`


Find `dy/dx"if", x= e^(3t), y=e^sqrtt`


Find `dy/(dx)  "if" , x = e^(3t), y = e^sqrtt`. 


Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×