Advertisements
Advertisements
प्रश्न
Find `dy/dx` in the following:
2x + 3y = sin x
उत्तर
Because, 2x + 3y = sin x
Differentiating both sides with respect to x,
`=> 2 d/dx (x) + 3 d/dx (y) = d/dx(sin x)`
`=> 2 xx 1 + 3 dy/dx = cos c`
`dy/dx = (cos x - 2)/3`
APPEARS IN
संबंधित प्रश्न
Find `dx/dy` in the following.
x2 + xy + y2 = 100
Find `dy/dx` in the following:
sin2 y + cos xy = k
Show that the derivative of the function f given by
If \[f\left( x \right) = x^3 + 7 x^2 + 8x - 9\]
, find f'(4).
Find `(dy)/(dx)` if `y = sin^-1(sqrt(1-x^2))`
If ex + ey = ex+y, then show that `"dy"/"dx" = -e^(y - x)`.
Find `"dy"/"dx"`, if : x = `sqrt(a^2 + m^2), y = log(a^2 + m^2)`
Find `"dy"/"dx"`, if : x = sinθ, y = tanθ
Find `"dy"/"dx"` if : x = t2 + t + 1, y = `sin((pit)/2) + cos((pit)/2) "at" t = 1`
Differentiate `tan^-1((cosx)/(1 + sinx)) w.r.t. sec^-1 x.`
If y = `e^(mtan^-1x)`, show that `(1 + x^2)(d^2y)/(dx^2) + (2x - m)"dy"/"dx"` = 0.
If x2 + 6xy + y2 = 10, show that `(d^2y)/(dx^2) = (80)/(3x + y)^3`.
Find the nth derivative of the following:
`(1)/x`
Find the nth derivative of the following : eax+b
Find the nth derivative of the following : apx+q
Choose the correct option from the given alternatives :
If y = sec (tan –1x), then `"dy"/"dx"` at x = 1, is equal to
Choose the correct option from the given alternatives :
If y = `a cos (logx) and "A"(d^2y)/(dx^2) + "B""dy"/"dx" + "C"` = 0, then the values of A, B, C are
If x sin (a + y) + sin a . cos (a + y) = 0, then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.
If sin y = x sin (a + y), then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.
Differentiate log `[(sqrt(1 + x^2) + x)/(sqrt(1 + x^2 - x)]]` w.r.t. cos (log x).
Find `"dy"/"dx"` if, `"x"^"y" = "e"^("x - y")`
Choose the correct alternative.
If x = `("e"^"t" + "e"^-"t")/2, "y" = ("e"^"t" - "e"^-"t")/2` then `"dy"/"dx"` = ?
Find `"dy"/"dx"` if x = `"e"^"3t", "y" = "e"^(sqrt"t")`.
If x2 + y2 = 1, then `(d^2x)/(dy^2)` = ______.
`(dy)/(dx)` of `2x + 3y = sin x` is:-
y = `e^(x3)`
If y = y(x) is an implicit function of x such that loge(x + y) = 4xy, then `(d^2y)/(dx^2)` at x = 0 is equal to ______.
If 2x + 2y = 2x+y, then `(dy)/(dx)` is equal to ______.
`"If" log(x+y) = log(xy)+a "then show that", dy/dx=(-y^2)/x^2`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
If log (x+y) = log (xy) + a then show that, `dy/dx= (-y^2)/(x^2)`
Find `dy/dx` if, x = e3t, y = `e^sqrtt`
Find `dy/dx` if, `x = e^(3t), y = e^sqrtt`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Find `dy/(dx) "if" , x = e^(3t), y = e^sqrtt`.
Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`