मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Choose the correct alternative. If x = et+e-t2,y=et-e-t2 then dydx = ? - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Choose the correct alternative.

If x = `("e"^"t" + "e"^-"t")/2, "y" = ("e"^"t" - "e"^-"t")/2`  then `"dy"/"dx"` = ? 

पर्याय

  • `"-y"/"x"`

  • `"y"/"x"`

  • `"-x"/"y"`

  • `"x"/"y"`

MCQ
बेरीज

उत्तर

`"x"/"y"`

Explanation:

x = `("e"^"t" + "e"^-"t")/2, "y" = ("e"^"t" - "e"^-"t")/2`

∴ `"dx"/"dt" = 1/2 ("e"^"t" - "e"^-"t")` and `"dy"/"dx" = 1/2 ("e"^"t" + "e"^-"t")`

∴ `"dx"/"dt" = "y" and `"dy"/"dt" = "x"` 

∴ `"dy"/"dx" = (("dy"/"dt"))/(("dx"/"dt")) = "x"/"y"`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Differentiation - MISCELLANEOUS EXERCISE - 3 [पृष्ठ ९९]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Differentiation
MISCELLANEOUS EXERCISE - 3 | Q I] 9) | पृष्ठ ९९

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find dy/dx if x sin y + y sin x = 0.


If for the function 

\[\Phi \left( x \right) = \lambda x^2 + 7x - 4, \Phi'\left( 5 \right) = 97, \text { find } \lambda .\]


If f (x) = |x − 2| write whether f' (2) exists or not.


Find `(dy)/(dx) , "If"   x^3 + y^2 + xy = 10`


Find `(dy)/(dx) if y = cos^-1 (√x)`


If ex + ey = ex+y, then show that `"dy"/"dx" = -e^(y - x)`.


Find `"dy"/"dx"` if x = at2, y = 2at.


Find `"dy"/"dx"` if : x = cosec2θ, y = cot3θ at θ= `pi/(6)`


Find `"dy"/"dx"` if : x = a cos3θ, y = a sin3θ at θ = `pi/(3)`


Find the nth derivative of the following:

`(1)/x`


Find the nth derivative of the following : y = eax . cos (bx + c)


Choose the correct option from the given alternatives :

If f(x) = `sin^-1((4^(x + 1/2))/(1 + 2^(4x)))`, which of the following is not the derivative of f(x)?


Solve the following : 

f(x) = –x, for – 2 ≤ x < 0
= 2x, for 0 ≤ x < 2
= `(18 - x)/(4)`, for 2 < x ≤ 7
g(x) = 6 – 3x, for 0 ≤ x < 2
= `(2x - 4)/(3)`, for 2 < x ≤ 7
Let u (x) = f[g(x)], v(x) = g[f(x)] and w(x) = g[g(x)]. Find each derivative at x = 1, if it exists i.e. find u'(1), v' (1) and w'(1). If it doesn't exist, then explain why?


Suppose that the functions f and g and their derivatives with respect to x have the following values at x = 0 and x = 1: 

x f(x) g(x) f')x) g'(x)
0 1   5 `(1)/(3)`
1 3 – 4 `-(1)/(3)` `-(8)/(3)`

(i) The derivative of f[g(x)] w.r.t. x at x = 0 is ......
(ii) The derivative of g[f(x)] w.r.t. x at x = 0 is ......
(iii) The value of `["d"/"dx"[x^(10) + f(x)]^(-2)]_(x = 1_` is ........
(iv) The derivative of f[(x + g(x))] w.r.t. x at x = 0 is ...


Differentiate the following w.r.t. x : `sin[2tan^-1(sqrt((1 - x)/(1 + x)))]`


Differentiate the following w.r.t. x : `sin^2[cot^-1(sqrt((1 + x)/(1 - x)))]`


Differentiate the following w.r.t. x : `cos^-1((sqrt(1 + x) - sqrt(1 - x))/2)`


If `xsqrt(1 - y^2) + ysqrt(1 - x^2)` = 1, then show that `"dy"/"dx" = -sqrt((1 - y^2)/(1 - x^2)`.


If log y = log (sin x) – x2, show that `(d^2y)/(dx^2) + 4x "dy"/"dx" + (4x^2 + 3)y` = 0.


Find `"dy"/"dx" if, sqrt"x" + sqrt"y" = sqrt"a"`


Find `"dy"/"dx"` if, x3 + y3 + 4x3y = 0 


Find `"dy"/"dx"` if, x3 + x2y + xy2 + y3 = 81


Find `"dy"/"dx"` if, xy = log (xy)


Solve the following:

If `"x"^5 * "y"^7 = ("x + y")^12` then show that, `"dy"/"dx" = "y"/"x"`


If log (x + y) = log (xy) + a then show that, `"dy"/"dx" = (- "y"^2)/"x"^2`.


Find `"dy"/"dx"` if x = `"e"^"3t",  "y" = "e"^(sqrt"t")`.


If x2 + y2 = 1, then `(d^2x)/(dy^2)` = ______.


If x2 + y2 = t + `1/"t"` and x4 + y4 = t2 + `1/"t"^2` then `("d"y)/("d"x)` = ______


If y = `sqrt(tansqrt(x)`, find `("d"y)/("d"x)`.


`(dy)/(dx)` of `xy + y^2 = tan x + y` is


Find `(dy)/(dx)`, if `y = sin^-1 ((2x)/(1 + x^2))`


Differentiate w.r.t x (over no. 24 and 25) `e^x/sin x`


If 2x + 2y = 2x+y, then `(dy)/(dx)` is equal to ______.


Find `dy/dx if, x= e^(3t), y = e^sqrtt`


Find `dy/dx if , x = e^(3t) , y = e^sqrtt`


Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`


Find `dy/(dx)  "if" , x = e^(3t), y = e^sqrtt`. 


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×