Advertisements
Advertisements
प्रश्न
Solve the following :
f(x) = –x, for – 2 ≤ x < 0
= 2x, for 0 ≤ x < 2
= `(18 - x)/(4)`, for 2 < x ≤ 7
g(x) = 6 – 3x, for 0 ≤ x < 2
= `(2x - 4)/(3)`, for 2 < x ≤ 7
Let u (x) = f[g(x)], v(x) = g[f(x)] and w(x) = g[g(x)]. Find each derivative at x = 1, if it exists i.e. find u'(1), v' (1) and w'(1). If it doesn't exist, then explain why?
उत्तर
u(x) = f[g(x)]
∴ `u'(x) = "d"/"dx"{f[g(x)}`
= `f'[g(x)]."d"/"dx"[g(x)]`
= f'[gx)] x g'(x)
∴ u'(1) = f'[g(1)] x g'(1)
= f'(3) x g'(1) ...(1)
...[∵ g(x) = 6 – 3x, 0 ≤ x ≤ 2]
Now, f(x) = `(18 - x)/(4)`, for 2 < x ≤ 7
and g(x) = 6 – 3x, for 0 < x ≤ 2
∴ f'(x) = `(1)/(4)(0 - 1) = -(1)/(4)`, for 2 < x ≤ 7
and g'(x) = 0 – 3(1) = – 3, for 0 < x ≤ 2
∴ `f'(3) = -(1)/(4) and g'(1)` = – 3
∴ from (1),
u'(1) = `-(1)/(4)(-3) = (3)/(4)`
Now, v(x) = g[f(x)]
∴ v'(x) = `"d"/"dx"{g[f(x)]}`
= `g'[f(x)]."d"/"dx"[f(x)]`
= g'[f(x)] x f'(x)
∴ v'(1) = g'[f(1)] x f'(x)
= g'(2) x f'(1) ...(2)
...[∵ f(x) = 2x, 0 ≤ x ≤ 2]
Now, g(x) = 6 – 3x, for 0 ≤ x ≤ 2
= `(2x - 4)/(3)`, for 2 < x ≤ 7
∴ g"(x) = 0 – 3 x 1 = – 3, for 0 ≤ x ≤ 2
and g'(x) = `(1)/(3)(2 xx 1 - 0) = (2)/(3)`, for 2 < x ≤ 7
∴ Lg'(2) ≠ Rg'(2)
∴ g'(2) does not exist
∴ from (2),
v'(1) does not exist
Also, w(x) = g[g(x)]
∴ w'(x) = `"d"/"dx"{g[g(x)]}`
= `g'[g(x)]."d"/"dx"[g(x)]`
= g'[g(x)] x g'(x)
∴ w'(1) = g'[g(1)] x g'(x)
= g'(3) x g'(1) ...(3)
...[∵ g(x) = 6 – 3x, 0 ≤ x ≤ 2]
Now, g(x) = 6 –3x, for 0 ≤ x ≤ 2
= `(2x - 4)/(3)`, for 2 < x ≤ 7
∴ g'(x) = 0 – 3 x 1 = – 3, for 0 ≤ x ≤ 2
and g'(x) = `(1)/(3)(2 xx 1 - 0) = (2)/(3)`, for 2 ≤ x ≤ 7
∴ g(3) = `(2)/(3) and g'(1)` = – 3
∴ from (3),
w'(1) = `(2)/(3)(-3)` = – 2.
Hence, u'(1) = `(3)/(4)`, v'(1) does not exist and w'(1) = – 2.
APPEARS IN
संबंधित प्रश्न
If y=eax ,show that `xdy/dx=ylogy`
If xpyq = (x + y)p+q then Prove that `dy/dx = y/x`
Find `dy/dx` in the following:
ax + by2 = cos y
Find `dy/dx` in the following:
xy + y2 = tan x + y
Find `dx/dy` in the following.
x2 + xy + y2 = 100
if `(x^2 + y^2)^2 = xy` find `(dy)/(dx)`
If \[f\left( x \right) = x^3 + 7 x^2 + 8x - 9\]
, find f'(4).
Find the derivative of the function f defined by f (x) = mx + c at x = 0.
If f (x) = |x − 2| write whether f' (2) exists or not.
Write the derivative of f (x) = |x|3 at x = 0.
If \[\lim_{x \to c} \frac{f\left( x \right) - f\left( c \right)}{x - c}\] exists finitely, write the value of \[\lim_{x \to c} f\left( x \right)\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
Find `"dy"/"dx"` ; if x = sin3θ , y = cos3θ
Find `(dy)/(dx) , "If" x^3 + y^2 + xy = 10`
Find `(dy)/(dx) if y = cos^-1 (√x)`
Find `(dy)/(dx)` if `y = sin^-1(sqrt(1-x^2))`
Differentiate tan-1 (cot 2x) w.r.t.x.
If ex + ey = ex+y, then show that `"dy"/"dx" = -e^(y - x)`.
If `sin^-1((x^5 - y^5)/(x^5 + y^5)) = pi/(6), "show that" "dy"/"dx" = x^4/(3y^4)`
If y = `sqrt(cosx + sqrt(cosx + sqrt(cosx + ... ∞)`, then show that `"dy"/"dx" = sinx/(1 - 2y)`.
Find `"dy"/"dx"`, if : x = sinθ, y = tanθ
Find `"dy"/"dx"`, if : x = a(1 – cosθ), y = b(θ – sinθ)
Find `"dy"/"dx"`, if : `x = cos^-1((2t)/(1 + t^2)), y = sec^-1(sqrt(1 + t^2))`
Find `"dy"/"dx"`, if : `x = cos^-1(4t^3 - 3t), y = tan^-1(sqrt(1 - t^2)/t)`.
Find `"dy"/"dx"` if : x = t2 + t + 1, y = `sin((pit)/2) + cos((pit)/2) "at" t = 1`
DIfferentiate x sin x w.r.t. tan x.
Differentiate `tan^-1((x)/(sqrt(1 - x^2))) w.r.t. sec^-1((1)/(2x^2 - 1))`.
Differentiate `cos^-1((1 - x^2)/(1 + x^2)) w.r.t. tan^-1 x.`
Differentiate `tan^-1((cosx)/(1 + sinx)) w.r.t. sec^-1 x.`
Find `(d^2y)/(dx^2)` of the following : x = sinθ, y = sin3θ at θ = `pi/(2)`
If x = cos t, y = emt, show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" - m^2y` = 0.
If y = eax.sin(bx), show that y2 – 2ay1 + (a2 + b2)y = 0.
Find the nth derivative of the following:
`(1)/x`
Find the nth derivative of the following : cos x
Find the nth derivative of the following : sin (ax + b)
Find the nth derivative of the following : y = eax . cos (bx + c)
Find the nth derivative of the following:
y = e8x . cos (6x + 7)
Choose the correct option from the given alternatives :
If f(x) = `sin^-1((4^(x + 1/2))/(1 + 2^(4x)))`, which of the following is not the derivative of f(x)?
Choose the correct option from the given alternatives :
If `xsqrt(y + 1) + ysqrt(x + 1) = 0 and x ≠ y, "then" "dy"/"dx"` = ........
If y `tan^-1(sqrt((a - x)/(a + x)))`, where – a < x < a, then `"dy"/"dx"` = .........
If `x = e^(x/y)`, then show that `"dy"/"dx" = (x - y)/(xlogx)`
Differentiate log `[(sqrt(1 + x^2) + x)/(sqrt(1 + x^2 - x)]]` w.r.t. cos (log x).
Differentiate `tan^-1((sqrt(1 + x^2) - 1)/x)` w.r.t. `cos^-1(sqrt((1 + sqrt(1 + x^2))/(2sqrt(1 + x^2))))`
If log y = log (sin x) – x2, show that `(d^2y)/(dx^2) + 4x "dy"/"dx" + (4x^2 + 3)y` = 0.
Find `"dy"/"dx"` if, yex + xey = 1
Find `"dy"/"dx"` if, `"x"^"y" = "e"^("x - y")`
If log (x + y) = log (xy) + a then show that, `"dy"/"dx" = (- "y"^2)/"x"^2`.
If `"x"^"a"*"y"^"b" = ("x + y")^("a + b")`, then show that `"dy"/"dx" = "y"/"x"`
Find `"dy"/"dx"` if x = `"e"^"3t", "y" = "e"^(sqrt"t")`.
If x2 + y2 = 1, then `(d^2x)/(dy^2)` = ______.
If x = a t4 y = 2a t2 then `("d"y)/("d"x)` = ______
If x = sin θ, y = tan θ, then find `("d"y)/("d"x)`.
If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x)` is ______
State whether the following statement is True or False:
If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x) = 1/(2sqrt(x)) + 1/(2sqrt(y)) = 1/(2sqrt("a"))`
`(dy)/(dx)` of `xy + y^2 = tan x + y` is
If y = `e^(m tan^-1x)` then show that `(1 + x^2) (d^2y)/(dx^2) + (2x - m) (dy)/(dx)` = 0
Find `(d^2y)/(dy^2)`, if y = e4x
If y = y(x) is an implicit function of x such that loge(x + y) = 4xy, then `(d^2y)/(dx^2)` at x = 0 is equal to ______.
If y = `sqrt(tan x + sqrt(tanx + sqrt(tanx + .... + ∞)`, then show that `dy/dx = (sec^2x)/(2y - 1)`.
Find `dy/dx` at x = 0.
If `tan ((x + y)/(x - y))` = k, then `dy/dx` is equal to ______.
`"If" log(x+y) = log(xy)+a "then show that", dy/dx=(-y^2)/x^2`
If log(x+y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Find `dy/dx if , x = e^(3t) , y = e^sqrtt`
Solve the following.
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
If log(x + y) = log(xy) + a then show that, `dy/dx = (−y^2)/x^2`
If log(x + y) = log(xy) + a then show that, `dy/dx=(-y^2)/x^2`
Find `dy/(dx) "if" , x = e^(3t), y = e^sqrtt`.