Advertisements
Advertisements
प्रश्न
Find `dy/dx` in the following:
xy + y2 = tan x + y
उत्तर
Since, xy + y2 = tan x + y
Differentiating both sides with respect to x,
`=> x d/dx (y) + y d/dx (x) + d/dx (y^2) = d/dx (tan x) + d/dx (y)`
`=> x dy/dx + y + 2y dy/dx = sec^2 x + dy/dx`
`=> dy/dx (x+ 2y - 1) = sec^2 x - y`
`dy/dx = (sec^2 x - y)/(x + 2y - 1)`
APPEARS IN
संबंधित प्रश्न
If y=eax ,show that `xdy/dx=ylogy`
Find `dy/dx` in the following:
ax + by2 = cos y
if `x^y + y^x = a^b`then Find `dy/dx`
Show that the derivative of the function f given by
If f (x) = |x − 2| write whether f' (2) exists or not.
If \[\lim_{x \to c} \frac{f\left( x \right) - f\left( c \right)}{x - c}\] exists finitely, write the value of \[\lim_{x \to c} f\left( x \right)\]
Find `"dy"/"dx"`, if : x = sinθ, y = tanθ
Find `"dy"/"dx"`, if : x = `(t + 1/t)^a, y = a^(t+1/t)`, where a > 0, a ≠ 1, t ≠ 0.
Find `"dy"/"dx"` if : x = t2 + t + 1, y = `sin((pit)/2) + cos((pit)/2) "at" t = 1`
Find `dy/dx` if : x = 2 cos t + cos 2t, y = 2 sin t – sin 2t at t = `pi/(4)`
Find `"dy"/"dx"` if : x = t + 2sin (πt), y = 3t – cos (πt) at t = `(1)/(2)`
Find `(d^2y)/(dx^2)` of the following : x = a(θ – sin θ), y = a(1 – cos θ)
If x = a sin t – b cos t, y = a cos t + b sin t, show that `(d^2y)/(dx^2) = -(x^2 + y^2)/(y^3)`.
Find the nth derivative of the following : apx+q
Find the nth derivative of the following : sin (ax + b)
Choose the correct option from the given alternatives :
If y = sin (2sin–1 x), then dx = ........
Choose the correct option from the given alternatives :
If `xsqrt(y + 1) + ysqrt(x + 1) = 0 and x ≠ y, "then" "dy"/"dx"` = ........
Choose the correct option from the given alternatives :
If x = a(cosθ + θ sinθ), y = a(sinθ – θ cosθ), then `((d^2y)/dx^2)_(θ = pi/4)` = .........
Solve the following :
f(x) = –x, for – 2 ≤ x < 0
= 2x, for 0 ≤ x < 2
= `(18 - x)/(4)`, for 2 < x ≤ 7
g(x) = 6 – 3x, for 0 ≤ x < 2
= `(2x - 4)/(3)`, for 2 < x ≤ 7
Let u (x) = f[g(x)], v(x) = g[f(x)] and w(x) = g[g(x)]. Find each derivative at x = 1, if it exists i.e. find u'(1), v' (1) and w'(1). If it doesn't exist, then explain why?
Differentiate the following w.r.t. x : `sin[2tan^-1(sqrt((1 - x)/(1 + x)))]`
DIfferentiate `tan^-1((sqrt(1 + x^2) - 1)/x) w.r.t. tan^-1(sqrt((2xsqrt(1 - x^2))/(1 - 2x^2)))`.
If y2 = a2cos2x + b2sin2x, show that `y + (d^2y)/(dx^2) = (a^2b^2)/y^3`
Choose the correct alternative.
If ax2 + 2hxy + by2 = 0 then `"dy"/"dx" = ?`
If y = `("x" + sqrt("x"^2 - 1))^"m"`, then `("x"^2 - 1) "dy"/"dx"` = ______.
State whether the following is True or False:
The derivative of `"x"^"m"*"y"^"n" = ("x + y")^("m + n")` is `"x"/"y"`
Find `"dy"/"dx"` if x = `"e"^"3t", "y" = "e"^(sqrt"t")`.
If x2 + y2 = t + `1/"t"` and x4 + y4 = t2 + `1/"t"^2` then `("d"y)/("d"x)` = ______
If x = a t4 y = 2a t2 then `("d"y)/("d"x)` = ______
If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x)` is ______
Find `(d^2y)/(dy^2)`, if y = e4x
If y = `sqrt(tan x + sqrt(tanx + sqrt(tanx + .... + ∞)`, then show that `dy/dx = (sec^2x)/(2y - 1)`.
Find `dy/dx` at x = 0.
Find `dy/dx` if, x = `e^(3t)`, y = `e^sqrtt`
If log (x + y) = log (xy) + a then show that, `dy/dx = (−y^2)/x^ 2`
Find `dy/dx` if, `x = e^(3t), y = e^sqrtt`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
If log(x + y) = log(xy) + a then show that, `dy/dx = (−y^2)/x^2`
Find `dy/dx"if", x= e^(3t), y=e^sqrtt`