Advertisements
Advertisements
प्रश्न
If y = `("x" + sqrt("x"^2 - 1))^"m"`, then `("x"^2 - 1) "dy"/"dx"` = ______.
उत्तर
If y = `("x" + sqrt("x"^2 - 1))^"m"`, then `("x"^2 - 1) "dy"/"dx"` = my.
Explanation:
y = `("x" + sqrt("x"^2 - 1))^"m"`
Differentiating both sides w.r.t. x, we get
`"dy"/"dx" = "m" ("x" + sqrt("x"^2 - 1))^"m - 1" * "d"/"dx" ("x" + sqrt("x"^2 - 1))`
`= "m" ("x" + sqrt("x"^2 - 1))^"m"/("x" + sqrt("x"^2 - 1))^1 * [1 + 1/(2sqrt("x"^2 - 1)) * "d"/"dx" ("x"^2 - 1)]`
`= "my"/("x" + sqrt("x"^2 - 1)) xx [(1 + 1/(2sqrt("x"^2 - 1))) ("2x")]`
`= "my"/("x" + sqrt("x"^2 - 1)) xx (1 + "x"/sqrt("x"^2 - 1))`
∴ `"dy"/"dx" = "my"/("x" + sqrt("x"^2 - 1)) xx (sqrt("x"^2 - 1) + "x")/sqrt("x"^2 - 1)`
∴ `"dy"/"dx" = "my"/sqrt("x"^2 - 1)`
∴ `sqrt("x"^2 - 1) * "dy"/"dx" = "my"`
APPEARS IN
संबंधित प्रश्न
Find `dy/dx` in the following:
ax + by2 = cos y
Find `dy/dx` in the following:
sin2 y + cos xy = k
if `(x^2 + y^2)^2 = xy` find `(dy)/(dx)`
Is |sin x| differentiable? What about cos |x|?
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
Let \[f\left( x \right)\begin{cases}a x^2 + 1, & x > 1 \\ x + 1/2, & x \leq 1\end{cases}\] . Then, f (x) is derivable at x = 1, if
Differentiate tan-1 (cot 2x) w.r.t.x.
If y = `sqrt(cosx + sqrt(cosx + sqrt(cosx + ... ∞)`, then show that `"dy"/"dx" = sinx/(1 - 2y)`.
Find `"dy"/"dx"`, if : x = a(1 – cosθ), y = b(θ – sinθ)
Find `"dy"/"dx"`, if : `x = cos^-1((2t)/(1 + t^2)), y = sec^-1(sqrt(1 + t^2))`
Find `"dy"/"dx"`, if : `x = cos^-1(4t^3 - 3t), y = tan^-1(sqrt(1 - t^2)/t)`.
Find `"dy"/"dx"` if : x = t + 2sin (πt), y = 3t – cos (πt) at t = `(1)/(2)`
If x = `(t + 1)/(t - 1), y = (t - 1)/(t + 1), "then show that" y^2 + "dy"/"dx"` = 0.
DIfferentiate x sin x w.r.t. tan x.
If x2 + 6xy + y2 = 10, show that `(d^2y)/(dx^2) = (80)/(3x + y)^3`.
Find the nth derivative of the following : (ax + b)m
Find the nth derivative of the following : apx+q
Choose the correct option from the given alternatives :
Let `f(1) = 3, f'(1) = -(1)/(3), g(1) = -4 and g'(1) =-(8)/(3).` The derivative of `sqrt([f(x)]^2 + [g(x)]^2` w.r.t. x at x = 1 is
Choose the correct option from the given alternatives :
If y = sec (tan –1x), then `"dy"/"dx"` at x = 1, is equal to
Differentiate `tan^-1((sqrt(1 + x^2) - 1)/x)` w.r.t. `cos^-1(sqrt((1 + sqrt(1 + x^2))/(2sqrt(1 + x^2))))`
If log y = log (sin x) – x2, show that `(d^2y)/(dx^2) + 4x "dy"/"dx" + (4x^2 + 3)y` = 0.
If x= a cos θ, y = b sin θ, show that `a^2[y(d^2y)/(dx^2) + (dy/dx)^2] + b^2` = 0.
Find `"dy"/"dx"` if, yex + xey = 1
Find `"dy"/"dx"` if, `"x"^"y" = "e"^("x - y")`
Choose the correct alternative.
If ax2 + 2hxy + by2 = 0 then `"dy"/"dx" = ?`
Choose the correct alternative.
If x = `("e"^"t" + "e"^-"t")/2, "y" = ("e"^"t" - "e"^-"t")/2` then `"dy"/"dx"` = ?
State whether the following is True or False:
The derivative of `"x"^"m"*"y"^"n" = ("x + y")^("m + n")` is `"x"/"y"`
If `"x"^"a"*"y"^"b" = ("x + y")^("a + b")`, then show that `"dy"/"dx" = "y"/"x"`
If x2 + y2 = 1, then `(d^2x)/(dy^2)` = ______.
If y = `sqrt(tansqrt(x)`, find `("d"y)/("d"x)`.
If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x)` is ______
If y = `e^(m tan^-1x)` then show that `(1 + x^2) (d^2y)/(dx^2) + (2x - m) (dy)/(dx)` = 0
Find `(dy)/(dx)` if x + sin(x + y) = y – cos(x – y)
If y = y(x) is an implicit function of x such that loge(x + y) = 4xy, then `(d^2y)/(dx^2)` at x = 0 is equal to ______.
Let y = y(x) be a function of x satisfying `ysqrt(1 - x^2) = k - xsqrt(1 - y^2)` where k is a constant and `y(1/2) = -1/4`. Then `(dy)/(dx)` at x = `1/2`, is equal to ______.
If y = `sqrt(tan x + sqrt(tanx + sqrt(tanx + .... + ∞)`, then show that `dy/dx = (sec^2x)/(2y - 1)`.
Find `dy/dx` at x = 0.
Find `dy / dx` if, x = `e^(3t), y = e^sqrt t`
Find `dy/dx` if, x = e3t, y = `e^sqrtt`